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SUMMARY

A The research completed ynder the contract F44620-75-C-0064

"Research in Seismology" during the period 1 July 1977 - 31

December 1977 falls within the two broad topics of (1) Seismic

source mechanisms and (2) Seismic wave propagation. The

specific research 'tasks within each category have broad

applicability to the problem of discrimination of earthquakes

from underground nuclear explosions, with particular emphasis

on the Asian continent.

-Source mechanism investigations included detailed studies

of several earthquakes in eastern Turkey from the standpoint

of field and teleseismic observations and of precursory

phenomena (Toks~z et al., 1977, 1978; Toks8z and Arpat, 1977).

Wave propagation work included studies of attenuation

mechanisms in rock (Johnston et al., 1978) and the application

of a technique for simultaneous inversion of surface wave

attenuation and phase velocity information to data from

several continental and oceanic paths (Lee, 1977; Lee and

Solomon, 1978).

Details of these studies are given in the preprints and

abstracts in the following sections. A list of publications

completed under the contract during the reporting period

is also included.
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2. SEISMIC SOURCE MECHANISMS

STUDIES OF PR'EONITORY PHENOMENA PRECEDING TWO
LARGE EARTHQUAKES IN EASTERN TURKEY

It. Nafi Toks~z (Dept. of Earth and Planetary
Sciences, Massachusetts Institute of Technology,
Cambridge, Niss. 02139)

Esen Arpat (M.T.A. Institute, Ankara, Turkey)

Two destructive earthquakes occurred in Eastern
Turkey on 5 September 1975 (Hs 

= 6.7) and 24
November 1976 (Ms = 7.3). On-site studies were
carried out imn:ediately after each earthquake.
Both earthquakes had observable fault traces and
many villages located directly over or very near
the fault trace. The mechanism of the 1975
earthquake was a thrust (30 km fault length)
and that of the 1976 earthquake was strike-slip
(55 km fault length). There were no instruments
in the epicentral region of either event.

Many villagers were interviewed to determine
if there were noticeable pre-earthquake phenomena.
Both events occurred at about mid-day. Many
residents of affected villages raise livestock
or have farm animals.

Before the 1976 earthquake there were corrobo-
rated reports of thunder-like noises (possibly
due to very small foreshocks) at the epicenter.
There was at least one case of increased water
flow from a spring near the fault at least one
day before the earthquake. Behavior of
domestic and farm animals prior to the earthquake
was investigated extensively by interviewing many
villagers and shepherds. There were no con-
firmed observations of unusual behavior of farm
animals, outdoors or indoors, prior to the
earthquake. However, barking or howling of dogs
a few hours to a few minutes before the earthquake
was widely observed.
During the night preceding the 1975 earthquake,

a brightening of the sky over a wide area was
reported by observers both in the epicentral 'sIon For
region and by geologists about 250 km away. GRA&I
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3.

SOURCE PROPERTIES OF THE 1976 EARTHQUAKE

IN E. TURKEY: A COMPARISON OF FIELD DATA AND

TELESEISMIC RESULTS

M. Nafi Toks~z and John Nabelek

Department of Earth and Planetary Sciences
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

and

Esen Arpat

M.T.A. Institute
Ankara, Turkey

October 1977
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Determining seismic moment and source parameters independently

from geological observations in the field, and from seismic

observations at teleseismic distances enables us to test the

validity of source models.

The Eastern Turkey earthquake on 24 Nov. 1976 (O.T. 12:22:18.3

G.M.T., MS = 7.3) had a clearly visible fault trace and measurable

displacements. The seismic source properties of this earthquake

can be determined from field observations and compared with those

determined from teleseismic observations. In this paper we

describe the earthquake source in terms of observed faulting

and the source parameters based on body and surface waves.

Field Observations

The earthquake epicenter (39.3°N, 43.7 0E) is to the north

of a possible SE extension of the N. Anatolian fault trace

through Lake Van. The connection of this earthquake fault with

those in Iran is not clear, although there are a number of

right-handed, strike-slip faults in Iran (branches of the North

Tabriz fault) extending toward the Turkish border (Berberian,

1976).

The fault break was visible for about 55 km and was

mapped (Fig. 1). Photographs in Fig. 2 illustrate the faulting.

The motion was almost purely right-lateral, strike-slip. The

surface trace has a strike of about N70°W in the central and

western side and it bends somewhat east of Caldiran and has an

A I
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azimuth of about N450W at the east end. The fault comes to

an abrupt end under mountains in the west. At the eastern end

the surface displacements become smaller gradually and the

fault trace disappears toward the Iranian border. The observed

horizontal displacements are more than 3 meters (330-350 cm)

in the west, about 250 cm in the central regions and less to

the east. The observed dip is nearly 90° . There are vertical

displacements with inconsistent direction, generally about 50

cm, observed locally in several areas. The southward tilt of

Lake Van, measured from water level marks, indicates a slight

uplifting of the southern block. From the surface displacements,

it appears that faulting may have started close to the west

end and propagated to the east. The reported duration of

severe shaking in Van (90 km to the SE, along an azimuth normal

to the strike) was about 17 sec, consistent with a fault length

of about 50-60 km.

Seismic moment and stress drop were calculated from the

field observations. Taking the fault length L = 55 km,

assuming fault width W = 1/3 L and the average observed

displacement D = 250 cm, and rigidity p = 4 x 1011 dyne/cm
2

27the seismic moment is F1 = 1.0 x 10 dyne/cm. The stress drop

calculated using a strike-slip model is M = 35 bars.

Source Parameters from Teleseismic Observations

Source mechanism and seismic moment of the earthquake were
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determined from analysis of P and surface waves. Data from

WWSSN, Canadian network, and SRO stations were used in the

analysis. The fault plane solution, obtained from both short

and long period P-wave polarities, is shown in Fig. 3. The

solution is well constrained with a strike: N73*W, dip: 78*S

and slip angle: 40* These are in excellent agreement with

the field observations. Essentially they confirm the right-

handed, strike-slip faulting with a very small thrust component.

These results are further confirmed by the surface wave data.

The Rayleigh waves from 19 stations were analyzed to

determine the seismic moment. Because of the large magnitude

of the event, low-gain stations and SRO's were most suited for

this study. The selection was made to obtain a good azimuthal

coverage. In addition to Ri's, 5 R 2's were used. Station

distributions and great circle paths are shown in Fig. 4.

Seismic moment was determined from the amplitude spectra

and corrected for attenuation and geometric spreading.

Theoretical amplitudes were calculated taking into account

source finiteness, radiation pattern and layered earth models

(Harkrider, 1964; Toks5z et al., 1965; Saito, 1967; Tsai and

Aki, 1969, 1970; Canitez and Toks6z, 1971). A Gutenberg earth

model was used for continental paths. The Q-values used were

a combination of values given by Tsai and Aki (1969), Kanamori

(1970), and Burton (1973). Most stations were located at nearly

equal distances from the source. Thus the relative amplitudes

p -I . . .
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at long periods are not affected appreciably by the velocity

and Q-models chosen.

The observed and theoretical amplitudes at T = 100 sec

period are shown in Fig. 5. Theoretical amplitudes were calculated

using a focal depth = 15 km, and a source model given by P-wave

first motion solution, with the seismic moment as a parameter.

A very good fit is obtained with a seismic moment of

M = 7.5 x 1026 dyne/cm. This is close to the value (10 x 1026

dyne-cm) calculated on the basis of fault length and surface

displacements observed in the field. The effect of source

finiteness and rupture velocity on spectra of long period waves

was not observ-d. The source parameters are summarized in Table

1.

Conclusion

The Van earthquake provided excellent data for comparing

source properties determined from field observations at the

source and from seismic records at teleseismic distances. The

surface faulting was very clear. The largest displacements were

in the western half of the fault and the surface data suggested

that fault rupture started in the west and propagated eastward.

The fault plane solution agrees best with fault parameters in

the western half.

The seismic moments calculated on the basis of observed

fault length and displacements and determined from Rayleigh
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wave spectra were 1.0 x 1027 and 0.75 x 1027 dyne-cm, respectively.

Considering the possible uncertainties in choice of parameters

used in both calculations, the agreement is remarkable. It

supports the idea that displacements at the surface were

representative of those along the whole fault width.

The observed displacements and the stress drop (Ao = 35

bars) are relatively high in comparison with other strike-slip

earthquakes (Kanamori and Anderson, 1975) of 55 km fault length.

This is probably due to the relatively young age of the fault,

and the strength of the rocks that make up the fault zone.
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-. Table 1

Summary of Source Parameters

Field Measurement Teleseismic

A. (static)

Strike N70OW N73 0 W

Dip %900 780S

Slip -- 40

?"ault Length 55 km --

-a gnitude (M S ) -- 7.3

Ave. Displacement 275 cm --
27i

Moment (dyne-cm) 1 x 1027 0.8 x 1027

Stress Drop 35 bars --

.. .0

__ __ __ __ _
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Figure Captions

Fig. 1 - (a) Location of the earthquake within the seismo-

tectonic setting of Turkey (inside the box), and (b)

detailed map of the observed fault trace.

Fig. 2 - Photographs of the fault trace observed immediately

after the earthquake. Photographs (a,b) show the

western section and (b,c) the central section of the

fault. The right-handed displacement is clearly visible

by the 350 cm offset of the stream (b) and the 250 cm

offset of a ditch (d).

Fig. 3 - Fault plane solution giving predominantly right-handed

strike-slip motion in agreement with field observations

shown in Fig. 2. Fault plane parameters: strike N73°W,

dip 78°S, slip angle 40.

Fig. 4 - Amplitude spectral density of Rayleigh waves at

T = 100 sec. Circles and traingles signify values

determined from Rl's and R2 's respectively. Line

represents theoretical amplitude for a source model given

by P-wave fault plane solution with seismic moment of

Mo = 7.5 x 1026 dyne-cm.
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3. SEISMIC WAVE PROPAGATION

Attenuation of Seismic Waves

in Dry and Saturated Rocks:

II. Mechanisms

David H. Johnston and M. Nafi Toksz

Department of Earth and Planetary Sciences

Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

and

Aytekin Timur

Chevron Oil Field Research Company

La Habra, California 90631

August 1977
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ABSTRACT

Theoretical models based on several hypothesized

attenuation mechanisms are discussed in relation to published

data on the effects of pressure and fluid saturation on

attenuation. These mechanisms include friction, fluid flow,

viscous relaxation, and scattering. The application of these

models to the ultrasonic data of Toks6z et al. (1978)

indicates that friction on thin cracks and grairn boundaries

is the dominant attenuation mechanism for consolidated rocks

under most conditions in the earth's upper crust. Increasing

pressure decreases the number of cracks contributing to

attenuation by friction thus decreasing the attenuation.

Water wetting of cracks and pores reduces the friction

coefficient, facilitating sliding and thus increasing the

attenuation. Il saturated rocks fluid flow plays a'secondary

role relative to friction. At ultrasonic frequencies in porous

and permeable rocks, however, Biot-type flow may be important

at moderately high pressures. "Squirting" type flow of pore

fluids from cracks and thin pores to larger pores may be a

viable mechanism for some rocks at lower frequencies. The

extrapolation of ultrasonic data to seismic or sonic

frequencies by theoretical models involves some assumptions,

verification of which requires data at lower frequencies.
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MATHEZIATICAL NOTATION

a, a' Biot flow structure constants

c(am) = pore-crack porosity

-=frequency

k - wavenumber

crack half length

q -: volume flow

r = radius f scattering inclusions

K, E, , = matrix moduli and density

K', F' , '', ' = inclusion moduli and density

effective mcduli and density

K= frame bulk modulus

N/Vo  number of cracks per volume

P - pressure

Pc' Pf' Pd = confining fluid and differential pressures

Q, Q- quality and dissipation factors

V = seismic velocity

a = attenuation coefficient

am = aspect ratio

6= log decrement

E= crack/pore porosity ratio

n= viscosity

= = dilatation

K = coefficient of friction

o, a* matrix and effective Poisson's ratios
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T relaxation time

S= total porosity

X = permeability

W= angular frequency

6c d = critical frequencies for squirting flowand shear relaxation
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INTRODUCTION

In order to reasonably evaluate and interpret laboratory

measurements generally made at ultrasonic frequencies ("l MHz)

and more importantly to extrapolate these results to seismic

frequencies, a precise definition of the mechanisms involved

in attenuation along with their pressure and frequency

dependence is needed. Numerous mechanisms have been proposed

and each may be considered to have a greater degree of impor-

tance to the overall attenuation under certain physical

conditions. These mechanisms include: matrix anelasticity

including frictional dissipation due to relative motions at

the grain boundaries and across crack surfaces (Walsh, 1966);

attenuation due to fluid flow including relaxation due to

shear motions at pore-fluid boundaries (Walsh, 1968 and 1969;

Solomon, 1973), dissipation in a fully saturated rock due to

the relative motion of the frame with respect to fluid inclusions

(Biot, 1956a,b; Stoll and Bryan, 1970); "squirting" phenomena

(Mavko and Nur, 1975 ; O'Connell and Budianski, 1977); partial

saturation effects such as gas pccket squeezing (White, 1975); energy

absorbed in systems undergoing phase changes (Spetzler and

Anderson, 1968); and a large category of geometrical effects

including scatt- ring off small pores and large irregularities

and selective raflection from thin beds (O'Doherty and Anstey,

1971; Spencer et al., 1976). Of these mechanisms listed,

all except the geometrical effects are dependent upon intrinsic

rock properties and will be considered in tnis study. It is

our purpose to evalute these mechanisms in terms of experimental

data in order to determine under what conditions one or more
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may be dominant in causing the overall attenuations of both

P and S waves.

In this paper we begin by examining the published data

on seismic wave attenuation in rocks under varying physical

conditions, highlighting important features that contribute

to our understanding of the mechanisms involved. In the

second section attenuation mechanisms along with available

theoretical formulations are presented. In the final section,

the theoretical models are compared to the data obtained by

Toks~z et al. (1978, this issue). In Appendix A, the

calculation of effective elastic moduli required for

determining the attenuation is briefly discussed. Our main

emphasis in this part will be to determine the relative

importance of the mechanisms in contributing tc the overall

attenuation and to what extent laboratory data may be used

to infer rock properties from seismic data obtained in the

field. Our discussions will be limited primarily to fully

saturated and completely dry competent rocks under pressures

up to a few kilobars and relatively low temperatures as might

be encountered in geophysical exploration.

ATTENUATION DATA

Seismic body wave attenuation has been measured for

many rock types over wide ranges of physical conditions and

frequencies, and by many techniques. Unfortunately, the

systematics of attenuation behavior with pressure, temperature

and saturation conditions has not been adequately measured nor

is it well understood. With some exceptions, laboratory ,,terni[J-
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atitri: 'Ji , attmuat t, I it'l t-r:'1 to spee:ific rocks under

one physical state. However, an overview of these data

can provide useful infornation on the nature and mechanics

of attenuation in upper crustal rocks. In this section,

individual determinations of attenuation will be briefly

summarized, followed by a more extensive review of data

that is oertinent to this paper.

The data examined in this paper have been obtained by

numerous experimental techniques including pulse transmission

of several types, resonant bars, and slow stress cycles. Each

method determines a different measure of attenuation. The

most commonly found quantities in the literature are the

attenuation coefficient, :, for a plane propagating wave in an

infinite medium; the logarithmic decrement, 6; and the

dissipation factor, Q-, or its inverse, the "quality factor",

Q. The relationships among these are given by:

f

O-aV 6

where V = velocity and f = frequency. In this paper, we

will deal with the parameters QI, Q, and a exclusively.

A representative sample of individual attenuation

measurements is listed in Table 1 along with other pertinent

parameters. Another summary of individual measurements taken

from the comoilation of Bradley and Fort (1966) is shown

graphically in Figure 1, where Q as a function of rock type

and rock porosity is plotted. The values taken are generally

at surface pressure although they cover a wide frequency range.

Figure 1 shows
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the wide variability of attenuation in rocks and a general

trend of 0 inversely proportional to porosity. As noted by

many investigators (Wyllie, et al., 1962; Knopoff, 1964,

Bradley and Fort, 1966; and others), the accumulation of

individual attenuation measurements has led to a series of

generalities that may be applied to the nature of Q in crustal

rocks. These are summarized below, with references to later

sections of this paper where certain effects are discussed

in more detail.

1. Frequency Dependence: Laboratory experiments show

that Q may be independent of frequency (a proportional to f)

over a broad frequency range (10 2-10 7Hz) especially for some

dry rocks (Birch and Bancroft, 1938; Born, 1941; McDonal et al.,

1958; Peselnick and Outerbridge, 1961; Attwell and Ramana, 1966;

Pandit and Savage, 1973; and others). Q-1 in liquids, however,

is proportional to frequency (Pinkerton, 1947) so that in some

highly porous and permeable rocks the total Q-1 may contain a

frequency dependent component (Born, 1941; Wyllie et al., 1962).

This component may be negligible at seismic frequencies even

in unconsolidated marine sediments (Hamilton, 1972).

2. Strain Amplitude: Attenuation appears to be independent

of strain amplitude for low strains such as those associated with

seismic waves (Mason, 1958; Gordon and Davis, 1968). Some

evidence exists (Winkler et al., 1977) that attenuation

-6discontinuously increases above a strain of about 10-
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3. Fluid Situration: Attenuation for fluid saturated

rocks is highe: tharn for dry rocks and depends on the degree

of saturation, fluid type, and frequency in a complicated way.

For rocks fully saturated with a low viscosity fluid (water,

oil) it js generally found that at ultrasonic frequencies

QP > Q" This topic will be further discussed in the next section.

4. Pressure and Stress Decendence. Observations show

that attenuaition decreases with increasing confining pressure.

This is usually considered to be due to the closing of cracks

in the roc'< matrix. Data suppcrting this and theoretical models

of the pressure effects will be discussed in later sections of

this paper. For applied nonh'ydrostatic stress, the attenuation

appears to be anisctropic (:, 2rk:lova et al., 1972; Walsh et al.,

1970). For shear waves polari?.ed normal to the axis of maximum

compression, attenuation is lc, 'est due to the closure of cracks

with faces normal to the axis (Lockner et al., 1977). At high

differential stresses, the onset of dilatancy increases the

attenuation (Lockner et al., 1977).

5. Temnerature Depende:-ce: The small amount of data on

this topic (Volarovich and Gurevich, 1957; Gordon and Davis,

1968) indicate that Q is generally independent of temperature at

temperatures low relative to the melting point.

An increase of attenuation

in quartzite with temp.eratures above 150*C noted by Gordon and

Davis (1960) mrncy be due to thermal cracking of the rock. Near

the boiling teinniatiures of pore fluids, attenuation may be affected

strongly by temp eratuoe.

We will now consider --n rore detail data pertaining to the

roles of fluid ::ation and hydrostatic pressure in
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determining the attenuation of seismic waves in crustal

rocks. In some cases the absolute determinations of atten-

uation reported by investigators are unreliable, yielding

unreasonable values. Therefore, we generally prusent the

data in terms of the relative change in a or Q-1.

Attenuation as a Function of Saturation Conditions

Although of great interest to the exploration community,

relatively little experimental work has been done on the

nature of attenuation as a function of saturation conditions.

Even the published data must be examined critically due to

the inherent difficulties involved in partial saturation

work. Unfortunately, little or no detailed description is

given in the experimental literature about the techniques of

fluid saturation. An important, yet experimentally difficult,

aspect is maintaining a homogeneous distribution of the

saturant in the bulk of the rock. We must also address the

question as to what constitutes a "dry" rock. In most cases,

samples are oven-dried prior to fluid injection. Heating

the sample will cause some alterations of the matrix structure.

In any event, it is nearly impossible to remove the fluid

completely; at least a mono-molecular layer of fluid will

probably remain in the thinnest cracks.
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The degro_ of saturation and the type of saturant,

characterized primarily by viscosity, appear to play an important

role in attenuation. Studies of the effect of partial saturation

by various fluids have been reported in Born (1941), Obert

et al. (1946), Collins and Lee (1956), Wyllie et al. (1962), and

Gardner et al. (1964). A summary of these results is shown in

Figures 2-5, where Q or the fractional change in Q is plotted as

a function of percent saturation. As pointed out in the preceding

section, the overall Q of the rock may be considered to contain

a frequency independent component plus a frequency dependent

component due to the fluid inclusions. Thus the effect of

partial s-uration may be frequency dependent (Born, 1941).

However, since the curves shown here were taken over a wide range

of frequencies but exhibit similar behavior, fluid losses may not

domlinate frequency independent losses in most rocks at surface

pressures.

Most of the rocks shown in Figures 2-5 are saturated with

water, chemic-allv active with intergranular material. The

exception is the alundum (Al20 3 ) saturated with soltrol, a

relatively inert petroleum naptha, shown in Figure 3. The

behavior of ,.ttenuation as a function of water saturation is

similar for al rocks. Q is sharply reduced at low saturations

presumably cue to the wett.na effect of water entering the fine

cracks, possibly reacting with intergranular material and

softening the rock. Also note that the effect of pressure is to

reduce the etfect ef sat~ito.on for both P and S waves as shown in
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Figures 4 and 5 since the finer

cracks are closed. In the case of soltrol saturation

(Figure 3) the change in Q observed for water saturation

is not seen. This implies that the effect observed for

water saturation is primarily due to either chemical

alteration of the intergranular material or a wetting

phenomenon. Since it is unlikely that water reacts strongly

with alundum, we favor the explanation that different wetting

properties cause the different saturation effects observed.

In real rocks, of course, a combination of the two mechanisms

is likely.

The effect of fluid type, i.e. viscosity, has been

discussed indetail by Wyllie et al. (1962) and Nur and

Simmons (1969a). The dependence of attenuation on fluid

viscosity is complicated and not at all obvious from results

presented by Wyllie et al. (1962). Taking thesedata at face

value, it would appear that very large viscosity fluids

(eg. glycerol) result in small fluid contributions to atten-

uation. This makes sense for some attenuation mechanisms

such as fluid flow in that higher

viscosity fluids decrease the effective permeability.

However, Nur and Simmons (1969a) have shown that the viscosity

effect is frequency dependent, consistent with a relaxation

type mechanism. In their experiment, a Barre granite

(porosity -0.6%) was saturated with glycerol which has a

viscosity extremely dependent on temperature. Thus by

varying the temperature of the saturated sample, the effect

of viscosity on velocities and relative attenuation of P and
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S waves is measured. The attenuation of S waves as a function of

pore fluid viscosity is shown in Figure 6. The relaxation peak

occurs at a viscosity where the characteristic time is equal to

the wave period. An experiment reported by Gordon (1974) shows

similar results.

Attenuation as a Function of Pressure

The pressure dependence of attenuation has been generally

neglected by most investigators yet the behavior of Q with

pressure can yield as much information about mechanisms as

the frequency dependence. When a rock is subjected to hydrostatic

pressure such as overburden pressure, its elastic and anelastic

properties will change. The behavior of elastic properties

under pressure is well known and a theoretical treatment of it

may be found in Toks~z et al. (1976). The most important factor

causing changes. in velocity is the change of porosity with

pressure; in particular, the closing of thin cracks. This also

holds true for changes in attenuation as will be discussed in the

next section. In all cases, attenuation decreases (Q increases)

with increasinr pressure. Experimental data verifying this are

found in Gardner et al. (1964), Klima et al., (1964), Levykin

(1965), Gordon and Davis (1968), Al-Sinawi (1968), Walsh et al.,

(1970) and Toks5z et al. (1978). For these data and the theoretical

models to be presented, the pressure given is the differential

pressure, Pd = Pc - Pf, where PC is the confining pressure and Pf

is the fluid or pore pressure. This relationship holds for all

rocks as demonstrated by laboratory tests (Wyllie et al., 1958;

Nur and Simmons, 1969b).

__ _ __ _
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The attenuation of P waves in diabase and greywacke

were measured by Klima et al. (1964) up to a pressure of

4 kilobars (kb) by a pulse transmission method with a

prevailing frequency of 0.9 MHz. Although not stated

explicitly, the samples are assumed to be air dry. The

results of this experiment are shown in Figure 7 which plots

the change in the attenuation coefficient, a, as a function

of pressure. In all cases a clear decrease in a is observed

up to about 1 kb. The relative changes in attenuation

are greater than those of the velocity measured in the same

type rocks under the same conditions (Pros et al., 1962).

Levykin (1965) investigated the attenuation of both P

and S waves in several igneous and metamorphic rock types

up to pressures of about 4 kb. A pulse echo technique at

a frequency of 1 MHz was used. Samples were air dry. The

results of these experiments for several gneiss samples are

shown in Figure 8. Again, the attenuation decreases

rapidly with increasing pressure, leveling off after about

1 kb. Levykin attributes the differing extent to which

attenuation is changed under pressure to be due to differences

in the weathering of the rocks.

Gordon and Davis (1968) studied the effect of pressure

(up to 4 kb) on a fluid saturated granite using slow stress

cycles (f = 10 mHz). Their data are reproduced in Figure 9.

The same features as seen in the previous works are evident

here.

So far we have considered data only for low porosity

rocks, either dry or completely saturated. However, the
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pressure effect for a partially saturated Berea sandstone has

been studied by Gardner et al. (1964). Both extensional and

torsional Q values were determined using resonance techniques

at frequencies up to 30 kHz. External influences on the sample,

such as losses into the pressure medium were considered. These

data are shown in Figures 4 and 5. The same general behavior

is seen for the data in Toks8z et al. (1978) for dry, methane,

and water-saturated Berea sandstone at ultrasonic frequencies

using the pulse transmission technique. The Q, however, levels

off at a lower pressure than for the igneous and metamorphic

rocks.

The variation of attenuation for P and S waves with

pressure was also studied for a variety of rock types by

Al-Sinawi (1968). A pulse transmission technique using

122 kHz transducers was used and the pressures for which

measurements were taken were .5, 1, and 2 kb. All of the rocks

studied were sedimentary except a granite gneiss and a

volcanic tuff. Al-Sinawi found, as observed before, that

both a and a decreased with pressure. In some rocks,
p s

particularly limestones, the pressure effect is different,

however, this is not completely described.

ATTENUATION MECHANISMS

As a first approximation we will assume that attenuation

mechanisms are independcnt of each other. Thus, we may
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consider each mechanism separately and then combine the results

to determine the overall attenuation. More specifically, we

will consider separately the relative effects of the matrix

anelasticity, the viscosity and flow of saturating fluids and

scattering from. inclusions. The pressure dependence of these

effects will be included. In all these cases the available

theoretical formulations are not very rigorous. They are guided

primarily by experimental observations and as a whole should be

treated as empirical relationships. The calculation of effective

elastic properties, necessary for the determination of attenuation,

is discussed in Appendix A. The method used is that of Kuster

and Toks8z (1974) and Toksz et al. (1976).

Attenuation Due to Matrix Anelasticity

Attenuation of seismic waves in a rock matrix can be

attributed to two factors: (1) intrinsic anelasticity of matrix

minerals and (2) frictional dissipation due to relative motions

at the grain boundaries and across crack surfaces. The intrinsic

anelasticity of minerals is generally small. In individual

crystals Q values are generally higher than a few thousand,

while in the whole rock Q values are normally lower than a few

hundred. Thus, in considering matrix attenuation, it is reasonable

to neglect the intrinsic attenuation in minerals and to consider

only the attenuation across grain surfaces and thin cracks.

The importance of frictional dissipation is supported by

the observation that 0 is generally independent of frequency as

predicted bythis mechanism. However, friction across crack

surfaces cannot account for all the anelasticity of the matrix.

As pointed out by Walsh (1966), rocks subjected- to confining

pressures high enough to close all cracks
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still exhitit non-zero attenuation. Thus it is necessary

to consider in addition to dissipation across crack surfaces,

an "intrinsic" anelasticity of the aggregate minerals.

The exact mechanism of grain boundary and crack dissipation

is iot known but frictional dissipation due to relative motions

of the two sides may be the major factor (Walsh, 1966). If this

is the case, then-the attenuation should depend very strongly on

the surface conditions that affect friction between grains.

Among these ar2 whether rocks are saturated or dry, the properties

of saturating fluids, and the amount of clay or other soft

components in the matrix.

From laboratory experiments and the lunar experience it is

found that granular materials exhibit very high Q values when

totally dry ard in a vacuum. In the absence of amosphere and

wat-er, the Coulomb forces across grains are very strong and

friction coefficients are high. Hence, no sliding motion can

take place across the surfaces. This accounts for very high Q

values measured for seismic waves in the moon (Q = 2000-5000:

Dainty et al., i976; Nakamura et al., 1974; Latham et al.,

1974; Toks~z et al., 1974) and in the laboratory under hard

vacuum conditions (Pandit and Tozer, 1970; Warren et al., 1974;

Tittmann et al., 1972, 1975). In the laboratory when a little

water vapor was introduced into the vacuum chamber, Q values

decreased significantly.

It is difficult to formulate attenuation due to grain

boundary and "frame anelasticity" effects since this requires

the detailed knowledge of crack and grain boundary properties.
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Walsh (1966) formulated the problem by approximating the cracks

as ellipsoids.in plane strain. For random orientation of cracks,

thi Q values for compressional and shear waves were computed

using the friction coefficient, K, effective Poisson's ratio a*,

matrix and effective rock moduli as parameters. The resulting

expression for P waves in an infinite medium is too complicated

.to be presented conveniently but has the following form:

-1 = E*-6 ON F(Ka*) (2)
E (1-2a ) Vo

when E* and E are the effective and matrix Young's moduli

respectively, and N is the number of cracks with half length, £,

in a volume, V0 . The function F(K,o*) is implicitly dependent on

the angle between the normal to the crack plane and the direction

of wave propagation. Only cracks of certain orientations,

determined by K and a*, will contribute to the attenuation.

A closed form solution for the attenuation of S waves is

impossible to obtain, but again from the Walsh (1966) formulation

we may write the general form as

* 3N
-1= E I_

(l+o*)E Vo F(K) (3)

where F(K) is a function of the friction coefficient.

For reasonable values of the friction coefficient and Poisson's

ratio, QP/Qs may be found by numerically evaluating equations 2

and 3 (Walsh, 1966). For K between 0.0 and 0.5 and a* between

0.15 and 0.25, Qp/Qs is found to be between about 0.4 and 1.5.

For most dry rocks Q/Qs < 1, while for saturated rocks Qp/QS 1.0
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at surface pressure (see Table 1).

Many data (Peselnick and Outerbridge, 1961; Peselnick and

Zietz, 1959; Knopoff, 1964) can be explained by the frictional

dissipation mechanism. This mechanism which yields a constant Q

with frequency, also'explains the "frame anelasticity" incorporated

in Biot's (1956a,b) formulations.

Although friction explains much of the observed behavior of

attenuation in rocks, the calculation of absolute values requires

the specification of too many unknown parameters (friction

coefficients, number and radii of cracks whose surfaces are in

contact) . Furthermore these parameters most likely will change

with saturation conditions. However, the Walsh formulation is

useful in det_2rmining the effect of pressure on the frictional

mechanism.
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In order to formulate this pressure dependence we assume:

1. The cracks and grain boundaries that contribute to

friction can be characterized by very thin spheroids with a

small aspect ratio, am (where am = thickness/diameter). From

equation A-3, the relative change of the fractional volume, c,

for this family of cracks as a function of differential pressures is:

dc . -P 4 (l-o(4)-- -" -; (4)
A 3 1ram (1-2a)

where a is thz matrix Poisson's ratio and K* is the effective

static or frame bulk modulus.

2. The effective coefficient of friction, K, is constant

with pressure. Thus, F(K) in equation (3) is a constant.

If we assume that the effective Poisson's ratio, a*, varies more

slowly with pressure than c, then F(K,a*) in equation (2) is

essentially a constant also.

Since the fractional volume of cracks with aspect ratio

, is:
m

4-a N(am)Z
3

c ( am)  3 Vo  (5)

equation (2) may be written as:

-l 3 E* (l-*) c(am) F(,,o*) (6)
p 4 E (1-20*2) 7ra m
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with i zimi Iar ch,:aven fo Q(1tL1o n (3). Then:

dQ'

p dE* dc (7)
Qp E* c
p

where £ includes variations in c* and F(K,o*). Using

assumption 2, :-0. Substituting equation (4) into (7) and then

integratinq, we finally obtain:

-i -i E* -AP/KA*Qp= QPo Eo* e (8)

4(1 - 02 )  QOE

where A 43 (1 - 02 - constant. A similar expression3~~ TQaM 1-Ia

is obtaincd for the attenuation of S waves. Qp and

at P = 0 are found empirically and thus the imaginary parts

of tht matrix moduli can be set as described in Appendix A. In

fact, at each pressure, the imaginary parts are given by:

-l -I
KI = (KR + 4 /3.R)Qp - 4/3vRQs

(9)
I= URQs 1

These results can then be used in equations (A-l) and (A-2) to

determine the effective moduli, velocities and attenuation.

Since am is arbitrary, the constant A is a free parameter and

must be found empirically.

At first glance, the exponential decay of Q- with pressure

predicted by equation (8) may not seem reasonable. As stated
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before, the attenuation of many rocks at high pressure is

non-zero. However, equation (8) describes only the effects of

cracks which control'the behavior of the elastic and anelastic

properties at relatively low pressures. If one considers a

rock with an extremely low total porosity but moderate crack

porosity such as a granite, then equation (8) may truly represent

the pressure dependence of Q-1. This is indeed observed in the

data from Gordon and Davis (1968) shown in Figure 9. For rocks

such as sandstones, however, we must consider the intrinsic

aggregate anelasticity to contribute to the obser-red attenuation

at pressures where the cracks are closed. In our models this is

determined empirically and assumed to be constant with pressure.

One further consideration is the difference between surface

pressure Q values for the dry Berea sandstone determined by the

ultrasonic pulse method (Toks6z et al., 1978) and values obtained

by dynamic resonance (Gardner et al., 1964 and unpublished data by

the authors). Compared on a common basis, the Qp value for the

pulse technique is about 20 while for the resonance method it is

higher t. in 50. The discrepancy is smaller for the saturated

case. Two explanations are possible. Either the friction

mechanism as we understand it.does not provide a frequency

independent Q or the attenuation is dependent on strain

amplitude. Some evidencu favors thne latter. Winkler et al. (1977)

have reported that 0 discontinuously decreases at a strain of about

10- 6 . This may be due to the presence of asperities in the cracks

which inhibit sliding until a threshold amplitude is exceeded.

The higher amplitude ultrasonic pulses (strain >10 - 6) may thus
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be able to cause sliding on these rough surfaces and result in

a higher attenuation. In the saturated case, crack surfaces

are lubricated -.nd the threshold amplitude is lower. Our

own unpublished resonance data on the Berea sandstone and

Plexiglass corroborate the amplitude threshold theory.

As Winkler reporte, a discontinuous increase in attenuation was

observed in the sandstone. However, no such increase was

observed in the crack and grain boundary free Plexiglass.

This result further strengthens the idea that cracks with

asperities in rocks result in an amplitude dependent frictional

mechanism. It may therefore be valid to compare experimental

and in situ results only when assured that factors such as

strain amplitude are equivalent.
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Attenuation Due to Viscosity and Flow of Saturating Fluids

All rocks in the upper crust are partially or completely

saturated with some fluid. It is of special interest then to

consider the effect of viscous fluids in a solid rock matrix.

Some mechanisms by which fluids contribute to attenuation are

illustrated in Fig. 10. These fluids in elongated pores and

fine cracks contribute to attenuation in a complex manner.

First, attenuation peaks due to viscous relaxation will develop

at frequencies dependent both on pore geometry and fluid

viscosity. For a rock with-a wide spectrum of pore aspect

ratios, the attenuation spectrum is of a complicated form.

This problem has been'discussed by Walsh (1968, 1969), Solomon

(1973), and Kuster and Toks6z (1974) for spheroidal pores.

Second, fluid flow between pores, induced by the stress

(seismic) wave, may cause attenuation. These flow mechanisms

fall into two categories, inertial flow (Biot, 1956a,b), important

at ultrasonic frequencies, and "squirting" flow (Mavko and Nur,

1975; O'Connell and Budiansky, 1977), more prominent at lower

frequencies. We will consider each separately and our

analysis of "squirting" flow will also include the formulation

for viscous relaxation.

In highly porous and permebble rocks, relative motion

may take place between the rock frame and the saturating fluid
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as seismic waves propagate. Biot (1956 a,b and 1962a,b)

derived a theory for acoustical wave propagation in an iso-

tropic solid with interacting pores. This theory can be

usedi to cal-u]-ite oth velocity' ond attenuation.

Biot theory predicts the existence of three types of body waves,

two dilatatilonal ar. one shear. One dilatational wave is highly

att,,, !ated ind rosem.!es a diffusion wave. The other is the

P body wave that tr,,:L, s with little attenuaticn or dispersion.

A fortiulatln or Bic-I 's theor- has been ueveloped by Stoll

and Bryan (1970) an(, Stol (1974 and 1977) and has been adopted

for this stu/.

As with attenuation due tu viscous shear relaxation,

the viscous n to fluid flow is frequency dependent

for oscillatin- mot£<:n. Belo.: certain frequency, dependent

on the fluid paropert-2 ra r characteristics, this resistance

is given by the rauLc of the fluid viscosity, r, to the

physical perscabilit , ,, and may be considered approximately

constant, describing Poiseuilie flow. At higher frequencies,

turbulent flow develops in which the effects of viscosity are

felt only in a thin boundary layer.

For frequencies at which Poiseuille flow is valid, the

attenuation coefficient, a, for the P type body wave varies as

the square of the frequency (Q f). At higher frequencies,

Biot derived a correction factor to the fluid viscosity and

found that a is proportional to fV2 (Q- C f- . Shear

attenuation involves onlv the idea that the moving solid frame

drags the viscous fluid with it. Since the fluid motion is

due only to inertial stresscs, this mechanism must be treated

in addition to the viscous relaxation model.
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The Biot type loss mechanisms, pressure gradient 
flow and

viscous drag, are schematically illustrated in Figure 10.

Biot theory and.the numerical model of Stoll and Bryan

(1970) require the following parameters: (following previous

notations) the elastic moduli for the frame, KA* and pA

and matrix, K and U; the bulk modulus and absolute viscosity

of the fluid inclusions, K' and n; the porosity, 0, the

physical permeability, X; and the densities of the matrix

and fluid, p and p'. All of these parameters are either

known or can be calculated using the technique described by

Kuster and Toks6z (1974) and Toks6z et al. (1976)

(Appendix A). Two other free constants derived from Biot

theory, a pore size parameter, a, and a structure constant,

a', must be appropriately chosen or experimentally found for

the material being considered. The choice of these values

is discussed by Stoll and Bryan (1970).

The attenuation formulations, for the two dilatational

waves after lengthy algebra, reduce to the solution of the

following period equation (Stoll, 1974):

Hk 2 -pW 2  
pmW 2 _Ck 2  0 (10)

Ck1 -. P W 2  mw 2 - M2- icujpr

where w is the angular frequency and k is the wavenumber.

m =a'p'/o (with al> 1). H,C and M are op'era:ors which are

functions of the frame, matrix and fluid moduli, and F is

a complex high frequency correction factor derived by Biot

(1956b). The attenuation coefficient is obtained by solvingD]
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for the complex roots (k kR + ikI ) of the period equation

and using the imaginary part of the wavenumber, ki. One root

represents the diffusion wave and the other the propagating

P wave. Another-, i-,ore simple, period equation for k may be

found for the S wave. Viscous drag at the pore-fluid interface

results in creater loss than flow induced by pressure gradients.

Thus, the model predicts that the attenuation of S waves is

greater than for the P waves in the case of the fluid flow

mechanism.

In general, the elastic moduli of the frame in this

formul;tion may be complex, allowing for the anelasticity of the

frame. Since this effect is considered separately in this study,

the irmaginary parts of the frame moduli. are set to zero. Numerical

calculations carried out by Stoll and Bryan (1970) indicate that

frame anelasticity dominates over the fluid flow effects at

lower frecuencies (f < 104 Hz). At high frequencies, the fluid flow

contribution could be detected for high porosity rocks if the

permeability is also high. In this case the frequency dependence

of the attenuation coefficient is f2 at lower frequencies and

f0.5 at higher (f > 10 5Hz) frequencies. For most sedimentary

rocks saturated with water, the effects of fluid flow are small

at seismic frequencies (f = 10 - 200 Hz), but could become

important at ultrasonic frequencies.

The pressure dependence of attenuation due to fluid flow

depends primarily on the change in permeability in the roc.l due

to cornpaction and pore collapse. The elastic moduli and total

porosity are easily obtained as functions of pressure using the

method of Tok z et a!. (]976). Furthermore, we may assume that

' .... .... i, ' h fluid inclusion remains relatively constant
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in the pressure Lange of 
interest.

Experimental determinations of permeability as a function

of confining hydrostatic pressure have been made for several

sandstones (Fatt and Davis, 1952), Westerly granite (Frangos,

1967), and Ottawa sand (Zoback and Byerlee, 1976). In general,

permeability decreases with increasing pressure but the rate

of decrease depends on the total porosity and fraction of crack

porosity. In highly porous and permeable consolidated rocks, the

bulk of the porosity and permeability is contained in the large aspect

ratio pores which do not close under pressure. Fatt and Davis

(1952) found a maximum reduction in permeability of 25% at

350 bars for the sandstones, while for a granite the reduction

may be as much as an order of magnitude (Frangos, 1967).

However, since the effect of fluid flow is negligible in all

but the highly permeable rocks, we need only consider data on

that type. Measurements of permeability in unconsolidated

Ottawa sand (Zoback and Byerlee, 1976) show a slow reduction

up to 800 bars where it drops offrapidly to level off again

between 2000 and 3000 bars. The acceleration in permeability

loss at 800 bars is presumably due to grain crushing and pore

collapse. However, the applicability of, this study to consol-

idated rocks is uncertain nor could it easily be modeled. We

shall assume that the permeability of highly

porous rocks is constant with pressure. The effect of this is

to give an upper bound on tle contribution due to fluid flow

on attenuation.

Several investigators have proposed attehuation mechanisms

by which flow is induced between two adjacent interacting cracks

due to the relative volume change caused by the stress wave



45.

and Budian-ky, 1977). These are commonly known as "squirting"

mechanisms and while they are not important at ultrasonic

frequencies, they may be so at sonic or seismic frequencies.

The elastic model of rIVoks6z et al. (1976) is particularly

useful in treating these mechanisms in that a distribution of

crack asoect ratios is uniquely determined and pressure

gradients between cracks ray be readily calculated.

Flow in any "squirting" mechanism is generally from small

aspect ratio (thin) cracks z) larger ones (pores). Thus the

flow field within the crack may be apprcximated by the flow

between two infinite plates as is done by Mavko and Nur (1975)

and O'Conneil and Budlianskv (i977). Here we consider an approach

to the problem consistent with the concepts and formulations

introduced by Toks6z et al. (1976). The details of the

calculations may be found in Appendix B. We assume that flow

will take place between very thin cracks with am  0 and pores

with am = 1 due to a differential volume change induced by the

stress wave. The pressure difference, the equalized pressure

after flow, the instantaneous flow, a, and the total flow, qT"

can be easily calculated. Assuming a relaxation of the form:

qT q C / dt=qt (11)
0

where i is the relaxation tim, we find that

2.
S r,/a 2;' (I + C) ( 2

I , _- .... . -" I I ... ... .. ... --
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where n is the viscosity, am the aspect ratio, K' the fluid bulk

modulus and e is the ratio of connected crack volume to pore volume.

We can make the approximation E 0 for most porous rocks.

Taking K' - 2 x 1010 dynes/cm2 , n = 10- 2 poise, with am

-3 -4
ranging'from 10-  to 10- , we obtain relaxation times ranging
from 4 x 10- 6 to 4 x 10- 4 sec.

The formulation of this mechanism in terms of complex

moduli yields an expression that also includes the viscous

relaxation iiiechanism in pores discussed earlier. This is a

result of applying the correspondence principle for the shear

modulus, a' = imn and expressing the bulk modulus as

K' = KR' + iwg, where g is considered an unknown to be determined

from the relaxation time for the "squirting" flow. While this is

a good approximation for high frequencies, at very low frequencies

(<0.1 Hz) the fluid offers little resistance to flow and thus

KR ; 0 (O'Connell and Budiansky, 1977). It is shown in Appendix B

that the equations (A-l) and (A-2) for the effective moduli can

be written in terms of two characteristic freauencies: wc = K/g

and wd = 3K/4n (equation B-13). wd is recognized as the

characteristic frequency for viscous relaxation (Walsh, 1969)

and w is the characteristic frequency for fluid flow from cracks.

;Prom the estimate of the relaxation time for this mechanism:

8n K-- (13)

g=2(1 + F) KR

For example, with c - 0, am = 10 n = 10 poise, K x102=1 2 02pie

dynes/cm2 and K R  2 x 1010 dynes/cm2 we find that g - 1.6 x 106

2poise or, more generally, g - 1.6/am poise. This mechanism is
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readily included in the elastic moduli formulations by finding

g from eq. 13, and then substituting to find K' to be used in

the elastic moduli calculations.

Other Sources of Attenuation

In many cases, rocks in the crust are partially saturated

by two or more fluids - air and water, oil and brine, gas

and oil to name a few. The effect of partial saturation on

velocity is fairly well known; however, its effect on attenuation

is not as well understood. Low seismic amplitudes from some

gas-sands, though, imply that the effect can be large. One

problem encountered is the distribution of the saturants in

the rock frame. Not only are large scale irregularities in

partial saturation found in rock formations but the distribution

on a smaller scale, pore to pore, may change. Gas bubbles in

water or oil are more likely to occupy space in the pores with

larger aspect ratios than in the finer cracks, where the friction

and relaxation mechanisms are more important. The latter effect

is evident from the data at low saturations discussed earlier

and shown in Figures 2-5.

Several mechanisms involving the presence of free gas in

the pores may contribute to the attenuation in partially saturated

rocks. This is illustrate,; in Figure 10. Gas bubbles have

several effec-s. First, the pore fluid bulk modulus is reduced,

facilitating flow even under very small pressure gradients.

(Stoll (1977) has also suggested that in this case, conversion

to Biot diffusion tyi e '.<uVcs at an interface can result in

substantial energy "os:;.) "Squirt" flow would also be enhanced.

Secondly, bubble squeezingj and moving in particular may

_ --1
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contribute to a decreased Q. Thus, in partially

saturated rocks, the attenuation may be greater than in the fully

saturated case. A small amount of fluid is reqxired to lubricate

cracks and grain boundaries to facilitate sliding and energy

loss due to friction. The presence of gas bubbles on the other

hand, enhances energy dissipation mechanisms operative at full

saturation and further loss may result from motions of the bubbles

themselves. This enhanced attenuation particularly concerns

mechanisms dependent on pressure gradients induced by P waves.

An attenuation model describing the effects of large scale

irregularities (on the order of 10 cm) in saturation conditions

has been proposed by White (1975). The porous rock is modeled

as containing spherical pockets saturated with gas with the rest

of the volume saturated with liquid. Loss due to fluid flow is

enhanced at the gas-liquid interfaces. White showed that for the

particular model chosen, attenuation due to this mechanism can

be important at seismic frequencies. There is some debate, however,

as to the occurrence of the saturation irregularities.

Several other mechanisms for attenuation have been proposed

although their applicability to upper crustal rocks is debatable.

Several of these mechanisms may be operable in the upper mantle,

however, such as grain boundary relaxation, relaxation caused by

a phase change, and a "high temperature background" attenuation

probably related to Nabarro diffusion (Jackson and Anderson, 1969).

_ °I
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Experimental evidence suggests little change in attenuation as

a function of temperature at relatively low temperatures

(Volarovich and Gurvich, 1957) when rock is not cracked and

saturating fluids not altered. However, near phase changes,

attenuation could change rapidly with temperature. High

attenuaticn has been obsered at critical points in multi-

component systems (Spetzler and Anderson, 1968; Wang and Meltzen,

1972). Energy is absorbed by i medium whose equilibrium is

disturbed by a stress wave. The frequency at which this occurs

is dependent on the rate at which phase equilibrium can follow

the changes imposed on it by the wave (Spetzler and Anderson,

1968). This mechanism may result in high attenuation in certain

geothermal areas.

We finally consider the effective attenuation due to

scattering by. inclusions in the rock. Although this is a

geometrical effect, it can, in some cases, affect the observed

attenuation. Yamakawa (1962) has analyzed the scattering of

compressional waves by spherical pores. The equivalent attenuation

coefficient, a, is given by:

(* 12.T4f r 4 r) 2 (2 + 3, ' s )  2 ] ( 42 r [2B 2 + (I + )B + B2 (14)

Vo 3 1 5

K - K'where B °-o 3k' + 4P

B1 = (p - p')/3p

B2  - 3.

2 = 3 , (9K+8j)
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and v - Vp/V5 , r = radius of inclusions, f = frequency. In

the above, primed coefficients represent the inclusion

properties. Although the effective attenuation of incident

plane S waves has not been calculated, we may estimate this

effect by noting that the energy loss due to SP reflections

is equivalent to PS reflections because of the reciprocal

theorem. While losses due to SS reflections are not 'he same

as PP, they are close and we can reevaluate equation (19) for

incident S waves assuming SS 5 PP. Doing so, the only changes

in the equation arethat V is replaced by V5 and v = Vs /Vp .p s

Attenuation due to scattering is strongly dependent on

frequency (. f4 ). As will be shown in the next section,

scattering effects can be important, if not dominant, at high

ultrasonic frequencies (f >1 MHz). At seismic frequencies,

scattering due to pores is negligible.

Another geometric effect is the apparent attenuation due

to selective reflection of the short wavelength component of

seismic waves in thin beds. Although of little L-nportance

with respect to laboratory measurements, this mechanism may,

under certain conditions, contribute to observed amplitude loss

in seismic sections. O'Doherty and Anstey (1971), Schoenberger

and Levin (1974) and Spencer et al. (1977) have examined these

cases in detail. In general, selective reflection due to

cyclic stratification contributes a small but important part

to the overall attenuation. If high reflection coefficients

occur, the apparent attenuation can be high.
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INTERPRETATION OF LABORATORY DATA

We shall now consider in more detail the relative effects

of the various attenuation mechanisms in dry and saturated

porous rocks. The methods and techniques discussed in the

previous section will be applied to model the behavior of

attenuation as a function of differential pressure for the

ultrasonic data on the Berea sandstone presented in Toks6z

et al., (1978). These models will then be extrapolated to

other frequencies. The application of these models to

previously reported data is difficult because absolute values

of attenuation appear to be unreliable in some eases, and

parameters needed in the calculations are unavailable in others.

The procecure taken involves first modeling the attenuation

in the dry rock in order to establish the needed parameters

for the friction mechanism and intrinsic attenuation in the

absence of fluid associated mechanisms. These parameters will

then be used in the modeling of the saturated sample data. An

important but probably valid assumption made here is that all

attenuation mechanisms that occur in dry rocks also occur in

wet ones. Given the parameters obtained from the dry case,

we may examine in more detail the relative importance of. the

mechanisms ccntributing to the attenuation in the brine-saturated

case as a function of pressure. In particular, since the

attenuation due to Biot-type fluid flow, squirting and scattering

are readily calculable it remains to be seen what the contribution

due to the presence of pore fluid is in terms of the friction

mechanism and intrinsic aggregate anelasticity. The approach

taken here is cmpirical and thus the models presented have no

. . . . .. , "I F
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absolute predictive ability.

The elastic moduli, fluid and frame properties used in

modeling the Berea sandstone are listed in Table II. The

bulk modulus of brine as a function of pore pressure is given

by Adams (1931) and Long and Chierici (1961). For the dry

case, the bulk modulus of air is taken to be one bar and the

pore pressure is assumed to be constant at one bar.

The surface pressure aspect ratio distribution listed in

Table III is determined by fitting theoretically calculated

elastic properties (equations A-1 and A-2) to the P and S

wave velocity versus differential pressure data for both

saturated and dry cases as described by Toks6z et al. (1976).

The frequency is taken to be .5 MHz.

The contributions to attenuation in the dry case are assumed

to be due to friction and the intrinsic aggregate attenuation only.

Zero pressure Q's were taken as 23 for P waves and 26 for S waves

based on the data from Toks6z et al. (1978). The pressure

dependence of 0 for the dry Berea sandstone may be reasonably

modelled with A = 0.2 x 104 (equation 8) and an intrinsic

aggregate Q for both P and S waves of 120. The possible

variations in the parameter A are not as wide as one might

4 4expect, ranging from 0.15 x 104 to 0.25 x 104. The results of

this empirical modhl fitted to the data are shown in Figure 11.

The introduction of brine as the pore saturant results

in no change in the parameter A, since the crack closing rate

is the same as for the dry case, determined by the static

rather than the dynamic effective bulk modulus.
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In the preceding section the role of fluids in determining

the attenuation was discussed. In particular, water may soften

and lubricate the matrix resulting in a higher attenuation

due to a friction type mechanism, especially for shear waves.

Since the contributions due to Biot fluid flow, squirting flow,

viscous shear relaxation and scattering are fairly well determined

from the properties listed in Table II it remains to be seen

in modeling the saturated data, what the contribution due to

friction is. This must be determined empirically. One important

constraint, however, is the low Q, especially Qs' at high

pressures. This implies that a mechanism which is relatively

independent of pressure, such as Biot fluid flow, is required

under those conditions.

The fluid flow contributions to the attenuation are

calculated as described in the previous section. Given the

attenuation due to all the mechanisms other than friction, it

is found that to fit the data, one must choose a zero pressure

Q for friction of 15 and a Qs of 10. These low values of Q

relative to the dry case indicate that brine saturation increases

the attenuation due to friction by almost a factor of two.

Although the data may be fit with a fluid viscosity of 1 cp,

a better fit is obtained by allowing the effective viscosity to

be 4 cp. This might be expected from experimental measurements

of the viscosity of water in clay-water systems (Low, 1959).

Such an effect would predict a higher attenuation in rocks

with higher clay content. Furthertnore, while not necessary,

the best fit to the data, shcwn in Figure 12, is obtained by
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reducing the intrinsic aggregate Q for shear waves by 5%. It is

perhaps no coincidence that the seismic velocities are best fit

in the saturated case by reducing the matrix shear modulus 5%

relative to the dry case. This may reflect the possibility of

increased shear and thus higher attenuation at grain boundaries

due to the presence of water as discussed earlier.

The relative contributions of the two important mechanisms,

friction and Biot-type fluid flow, in the brine-saturated case
-i

are easily seen in Figure 13 showing Qp for each mechanism

as a function of pressure. The small increase in the fluid

flow contribution at low pressures is an artifact of the

calculations. As would be expected, friction across cracks and

grain boundaries is dominant at low pressures but becomes less

important as cracks close. Since the bulk of the porosity and

permeability is unaffected under the pressure conditions of

interest, the fluid flow contribution to attenuation remains

relatively constant with pressure and becomes an increasingly

important mechanism. Obviously at some pressure, the porosity

and permeability of the rock will break down and one should

expect a rapid increase in Q.

Using the Berea sandstone properties from model calculations;

we shall now examine in more detail the individual contributions

of each mechanism for the fully saturated case and extrapolate

these results to other frequencies. The interpretation of these

models must remain strictly within the confines imposed upon them.

That is, it is assumed that strain amplitudes are equivalent to

those in the laboratory experiment and that no other mechanisms
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contribute to attenuation at frequencies other than those at

0.5 MHz.

A theoretical overview of the relative contribution of each

mechanism considered is shown in Figure 14. Here, the P wave

attenuation coefficients are plotted as functions of frequency

for a surf~tce pressure condition. Figure 14 was obtained by

fixing the attenuation at 0.5 MHz based on the theoretical

model if the pressure data (Figure 12). The resulting curves

are theoretical extrapolations. A constant Q mechanism for

friction is assumed. The same model is shown in Figure 15

except that the attenuation coefficients are calculated for a

differekwiaL pressure equivalent to a depth of about 10000 feet.

The corresponding aspect ratio distribution is listed in Table III.

Figures 14 and 15 clearly show the relative effects of

friction, fluid flow, shear relaxation and scattering on the

attenuation of P waves. Similar results are obtained for S waves.

If friction is indeed a frequency independent attenuation

mechanism, then it dominates the other mechanisms for this case.

However, as seen before, friction is of somewhat less importance

at higher pressures. As assumed in our models, the contribution

of Biot fluid flow remains essentially unchanged between Figures

14 and 15. While never dominating in this case, it is of importance

at about 105 Hz where Poisseuille flow breaks down. A striking

change in the squirt flow and shear relaxation mechanism is

apparent however. For surface conditions, the contribution due

to these mechanisms is readily seen from Figure 16. Here, Q
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for both P and S waves is shown for the squirting and shear

relaxation mechanisms only. Two peaks are evident, the lower

frequency one corresponding to the flow mechanism and the other

to viscous relaxation. The shape of the relaxation peaks are

complicated, reflecting the spectrum of pore and crack shapes.

The transition from flow to viscous relaxation takes place at

about 50 KHz, below which Q-l> Q-1 and above which QI > 0tI.p. s s p
Even though viscous relaxation peaks at f = 109, Hz, it is

clear from figures 14 and 16 that the contribution of these

mechanisms to the attenuation in the Berea Sandstone is small

in the frequency band of interest, even at surface pressure.

Furthermore, the effect of pressure, as seen in Figure 15, is

to close cracks contributing to both the squirt flow and viscous

relaxation, thus lowering even further, their associated

attenuations.

Scattering off inclusions produces a negligible effect

eccept at very high frequencies where this mechanism clearly

dominates. A larger scatterer radius will shift this curve to

lower frequencies.

We finally combine both the frequency and pressure behavior

of attenuation in our saturated Berea Sandstone model in Figure 17

where the total Op of the rock is shown. For low pressures, Qp

remains essentially unchanged as a function of frequency,

reflecting the importance of the friction mechanism. Qp increases

with pressure and at high pressures and low frequencies

(<104 Hz) Qp is greater than 100. Qp decreases with increasing
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frequency at higher pressures due to the increasing contribution
7

of Biot flow. Finally, at very high frequencies (10 Hz),

Qp decreases sharply because of scattering.

While the ultrasonic attenuation data may be understood

and modeled by several mechanisms, some problems exist in the

extrapolation of these data to luwer frequencies. As discussed

earlier, the frequency dependence of the important friction

mechanism is not clearly established. Furthermore, strain

amplitudes at seismic exploration frequencies may not be the

same as those used in ultrasonic measurements, thus invalidating

the absolute estimates of Q. However, theoretical models, such

as the ones presented in this paper, provide a method of

comparing labcratory data taken under controlled conditions

with in situ data. One has to be aware, however, that the

contributions of mechanisms that may be important at low

frequencies are difficult to establish from ultrasonic data

unless supplementary information is available. Furthermore,

it is obvious that from these models one would only obtain a

point property of the rock. For in situ data, the intrinsic

attenuation must be isolated from other amplitude reducing

mechanisms such as scatter4 ng, spreading, or multiple reflections,

before comparison with laboratory data.
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CONCLUSIONS

The investigation of both published and new laboratory

data on the attenuation of seismic waves in rocks, partirularly

sandstones, has shown that many of the same properties and

processes that affect velocity also affect attenuation, many

times to a greater extent. These properties.include the number

and distribution of cracks, the type and amount of fluid

saturation and the mechanical properties of the rock matrix.

We have approached the problem of attenuation in dry

and completely saturated rocks by examining a niumber of

hypothesized mechanisms for which numerical models may be

applied. The formulation of the pressure dependence of these

models enables us to reasonably fit ultrasonic data for Q

and Qs in a Berea sandstone. The models for attenuation

require the specificationof severa-1 free parameters and thus

limits their predictive abilities. Furthermore, assumptions

involving the frequency and amplitude behavior of the friction

mechanism must be considered if laboratory data are compared to

in situ data. However, given the limitations of the models,

several conclusions regarding the attenuation of seismic waves

in rocks are possible.

1. At relatively shallow depths in the earth's crust,

the primary mechanism for attenuation is friction on grain

boundaries and thin cracks.
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2. Increasing differential pressure decreases the

number of cracks contributing to attenuation by friction.

Since frictional loss depends on the number of cracks, the

attenuation decreases with increasing pressure and eventually

approaches a limiting value we call the intrinsic aggregate

anelasticity. This is probably due to grain boundaries and

fine structure relatively unaffected by pressure.

3. In totally dry rocks, the attenuation is less than

.t or saturated rocks. The introduction of fluid into a

dry rock will wet crack surfaces and grain boundaries. By

this crack lubrication, frictional sliding is facilitated and

the attenuation increases.

4. In a saturated porous rock, attenuation due to fluid

flow plays a secondary role relative to friction. At low

frequencies, squirting flow may be a viable mechanism, especially

in the case of partial saturation. At ultrasonic frequencies,

the Blot-type fluid flow mechanism, while not necessarily

dominating, plays an important role in the overall attenuation

at high pressures.
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APPENDIX A

ELASTIC MODULI FOR CALCULATING ATTENUATION

The calculation of attenuation requires the knowledge

of several elastic moduli and their pressure dependence.

Given the matrix or grain moduli. and.density, K, U, and p,

and the inclusion properties K', u,' and p', the effective

properties of a composite medium may be found following the

treatment of Kuster and Toks6z (1974). Cracks and large pores

in the rock are represented by a discrete spectrum of various

aspect ratio spheroids. Letting c(cm ) be the concentration

of pores and cracks with aspect ratio ctm = thickness/diameter,

the effective moduli are given by (Kuster and Toks6z, 1974):

M
K* - K 1/3 K'-K Ec(m) Tiijj(am ) (A-i)
3K* + 4u 3K + 4P m=l

I M
-1 1'- E c(an).

6u*(K+2u) + ).(9K+8g.) 25j(3K+4u) m=l

(A-2)

[Tijij (am) - 1/3 Tiijja m)]

where '*' denotes effective properties, primed quantities

refer to fluid properties and unprimed quantities are matrix

properties. K and represent bulk and shear moduli and

Tiijj and Tijij are scalar quantities. The total porosity is:

M
* = E c( )

m=l m

4,
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and the density is:

9* - p) + P'

The effect of pressure on the crack and pore distributions

and thus th- effective moduli and velocities of rocks has

been studieu by Toks6z et al. (1976). The strain field

around an el lipsoidal cavity is calculated as a function of

the elastic moduli of the matrix and an applied strain field

at infinity. The dilatation of the applied field is

-P/KA wherE P is the applied hydrostatic differential pressure

and KA* is the effective static bulk modulus or frame bulk

modulus. From this, the fractional change in pore volume,

dc/c may be found. For the particular case of very thin cracks

(i.e. am  0),

dc_ _ P r 4 (1-o2 ) (A3)

c K 3ira ( .-2a)

where a = matrix Poisson's ratio. This relationship also

provides the basis for calculating the change in attenuation due

to friction under increasing hydrostatic or differential pressure.

Anelasticity may be introduced into the effective moduli

formulations oy employing the concept of complex moduli

(Anderson et al., 1965 and Bland, 1960). This method is

particularly useful in dealing with frequency independent Q

mechanisms such as grain boundary and crack friction. Let the
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complex bulk and shear moduli be expressed as

K =KR + iK

(A-4)

where subscripts R and I refer to real and imaginary parts.

If bhe attenuation is small, then the velocities and attenuation

coefficients can be expressed conveniently. For .npressional

waves,

R 
+  4 3 Ij R ] /

vp=II p i

(A-5)

-1 K I T 4/3 "

KR + 4/3 R

For shear waves,

!R 1/2V - ] (A-6)

-i I
s - I

UR

To determine the imaginary part of the moduli it is

necessary to rely on observation and to follow an empirical

approach. The magnitudes of K, and P, should be chosen in each

case to match observed Q values at appropriate conditions.



63.

APPENDIX B

FLUID FLOW FROM CRACKS

FORMULATION AND ESTIMATION OF THE RELAXATION TIME

Flow will take place between thin cracks with aspect
ratio a ~ 0 and pores with a Z I due to a differential volume

m m

changje induced by the stress wave. The fluid pressures and

volume changes are given by:

P0 -K'6 and dC Coa, am 0
00 0

(B-I)

P1 - 1 dC1  C 1 e 1 , a 1

where C is the volume concentration of cracks or pores and 6

is the dilatation. The pressure difference is 6P = P 0 - P1.

Letting the equalized pressure after flow be P, then the

corresponding dilatation in both the crack and pore is

= -P/K'. The total liquid volume displaced in order to

equalize the pressure is given by:

q dC-0 - dC 0  dC - dCI (B- 2 )

where dC0 = C 0 and dC1  C 1. Solving for a we obtain:

0 +0 1 1
= 1 + ( $-3)

where c = C0/CI, or the volumetric ratio of connected cracks to pores.

Furthermore:

-- V li i i l 1 I I - 1 I
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e1 -e 0
qT " C0 [-1 + ] (B-4)

The instantaneous flow between two parallel plates

(crack surfaces) separated by distance h is given by

h2A dPq = I-" (B- 5)

where A now becomes the cross sectional area of the crack

and is equal to Th2 A m or 7rh£. If we let dx = 2. (crack length)

then from equation B-1 and B-5:

q = K (81 - o) (B-6)

Assuming a relaxation of the form:

q q Ie - t/T dt = qT (-7)

where T is the relaxation time, we obtain

o 0 (1 - eo )/(l + e) 
(-8)

irh3K , (01 - 80)/6 n

4 ,rh3Since the volume of the crack, CO = - :
m

- 8n/0 2K'(l + E) (B-9)
m

Viscoelastic Formulation:

We will now show that by using.the correspondence principle

for both the shear and bulk moduli of the f.u~d phase that the
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equations for the effective moduli may be written in terms

of real and imaginary parts and two characteristic frequencies.

Rewriting equation A-i for the effective bulk modulus by
K' T....

letting 6 = - ) 13 (dropping the summation overK .3

aspect ratios we obtain:

4CK 6K+ 3K1 +4 C '
K* K= 3K +, 4u [1 -- 3KC6' (B-10)"

K - 3CK6 1 3KC6'
11
3K + 4p

where 6' = 6/(3K + 4p). Letting 6' be complex, i.e.

6' = a + ib, then:

K* K[1 + 4uC(a + ib) =K * + K1 3KC(a + ib) R I

where

K K 1 41jCa) (1 - 3KCa) - 12K iC b2  (B-il)
R (1 - 3KCa)2  + (3KCb)2

and K * = bK [412C(l - 3KCa) + 3KC(l + 4.OCa)]
1 (1 - 3KCa)2 + (3KCb)2

Applying the correspondence principle we let K' =KR' + .ig

and p' = iwn where n is the viscosity and g is considered an

unknown to be determined from the relaxation time for flow. We

now show that the equations for the effective moduli can be

written in terms of two characteristic frequencies and that the

real and imaginary parts of 6' are uniquely determined. For

small aspect ratios:
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1 _K_ _ 3K + 4__ _ _ _ _ _6' - 3K + 4 (-- 1) 3K +4' + K

(Toks8z et al., 1976, equation C-4) where K1 =3iTa m(3K + 4p)/

(3K + 4U). Substituting the complex K' and i' we obtain after

some algebra:

K1 + ) 1 + iw/Wd (B-13)
3K + 4i K - + - (K,,+K2 )+iw(i/wc+i/wd)

where K" = KR'/K, K2 = KI1/3K with wc = K/g and wd = 3K/4n.

wd is recognized as the characteristic frequency for viscous

relaxation in isolated cracks (Walsh, 1969) and wc is the

characteristic frequency for fluid flow from cracks. Finally,

it can be shown that the real and imaginary parts of 6' =a + ib

can be written as:

1 2 11 w2 K"+K 2  1 1
[ =~ (K"-1) (+K2 +! - (- -l )) - - ( -- - )A 2 d c Wd Wc d Wc wd

(B-14)
1 K-+K 2  1 1

b (W - .)Kl+ (K"+K2)+- -+-l)
S [( d c d) (K"I c 2 wwdc + wd

where A - [(K"+K 2 ) 2 + W2 (_1 + 1)2]/(3K + 4 p). The equivalentW c Wd
result is obtained for the effective shear modulus.

From equation (B-9) we have

= 8D
c KR' (1 + C) (S15)

so that

+ R
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Table II

Physical Properties Used for Modeling the Berea Sandstone

Matrix: K = 35 x 1010 dynes/cm 2

u -25 x 1010 dynes/cm2

p = 2.61 g/cm
3

Inclusion: K' = 2.6 x 1010 dynes/cm 2

n = 4 x 10- 2 poise

P' = 1.0 g/cm
3

Frame: f 0.16

X = 75md

Fluid Flow Structure Constants: a = 1.0 x. 10 - 4 a' = 3.0
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TABLE III

Aspect Ratio Distributions

Concentration, c Aspect ratio, a

Surface 0.12 1.00

0.04 0.10

0.10 x 10- 0.17 x 10-2

0.10 x 1-30.14 x 10-2

0.20 x 1-30.10 x lo-2

0.15 x 10 0.60 x103

0.75 x 1-40.30 x 10-

0.30 x 10-4 0.10 x103

0.90 x lo- 0.30 x104

0.30 x 10- 0.10 x 10-

10000 feet 0.119 1.00

0.395 0.98 x 10-1

0.152 x 10- 1 0.258 x103
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Figure Captions

Figure 1. Q as a function of porosity. Data for igneous

and metamorphic rocks (triangles), limestones (squares),

and sandstones (circles) are taken from Bradley and Fort

(1966).

Figure 2. Change in Q as a function of saturation. Data from

Obert et al. (1946) and Martin (1956).

Figure 3. Change in Q as a function of soltrol and water

saturation in alundum at about 10 kHf. Data from Wyllie

et al. (1962). Samples 7915-B an& 7928-B for soltrol and

water, respectively.

Figure 4. Q a: x function of saturation and differential pressure

in Berea sindstone, extensional mode. Data from Gardner

et al. (1964).

Figure 5. Q as a function of saturation and differential pressure

in Berea sandstone, torsional mode. Data from Gardner et al.

(1964).

Figure 6. Relative attenuation of S waves as a function of pore

fluid viscosity in Barre granite. Data from Nur and Simmons

(1969a).

Figure 7. Change in the attenuation coefficient as a function of

pressure for several rocks. Data from Klima et al. (1964).

Figure 8. Change in the attenuation coefficients of P and S

waves &s functions of pressure for several gneisses. Data

from Levykin (1965).

Figure 9. Q-1 as a function of differential pressure in a

granite. Data from Gordon and Davis (1968).
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Figure 10. Schematic illustration of several proposed attenuation

mechanisms for saturated and partially saturated rocks.

Figure 11. Model fit (solid and dashed lines) to data from

Toksbz et al. (1978, Figure 7) dry Berea sandstone. Pore

pressure is assumed to be 1 bar (14.7 psi).

Figure 12. Model fit to data from Toks6z et al. (1978, Figure

11), brine-saturated Berea sandstone.

Figure 13. Relative contributions of the friction and fluid

flow mechanism for P waves from the model of Figure 12 as

function of differential pressure.

Figure 14. P-wave attenuation coefficients at surface pressure

as functions of frequency, for several mechanisms considered

in the saturated Berea sandstone model. Model parameters

are listed in Tables II and III and the text. The viscous

shear relaxation mechanism is included on the line labeled

"squirt" flow.

Figure 15. P-wave attenuation coefficients as functions of

frequency for the saturated Berea model as in Figure 14.

Here, the contributions for each mechanism are calculated

at a differential pressure equivalent to about a 10000 ft. depth.

Figure 16 and for the "squirt" flow and viscous shear

relaxation mechanisms in the saturated Berea sandstone model

at surface pressure as functions of frequency.

Figure 17. Total Qp for the saturated Berea model as a function

of frequency and differential pressure based on the results

presented in Figures 12, 14, and 15.
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ABSTRACT

Simultaneous Inversion of Surface Wave Phase Velocity

and Attenuation for Continental and Oceanic Paths

by

Wook Bae Lee

Submitted to the Department of Earth
and Planetary Sciences on 4 November 1977

in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

An inversion study of surface wave attenuation and

dispersion has been conducted to investigate the vertical

and lateral variations of shear attenuation and shear

velocity structure in the earth's mantle. Variation of

lithosphere thickness and of shear attenuation in the

asthenosphere can be related to temperature variations,

partial melting and even some indications of the tectonic

history of the earth. Possible attenuation mechanisms in

the earth's mantle are expected to be thermally activated

relaxation mechanisms. The relatively small strains

associated with seismic wave amplitudes satisfy linearity

at least approximately for such mechanisms. The linearity

assumption is particularly important because of its
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computability. Causality and superposition principals are

the main characteristic of linearity. Anelastic dispersion,

which arises from linearity, is an important consequence

due to causality. In a viscoelastic medium, anelastic

dispersion (due to causality) is considered by a given

dispersion-attenuation relation and implemented into the

inversion schemes,

A formalism for simultaneous inversion is developed

and applied to data from North America and the Pacific.

The simultaneous inversion approach is formally different

and gives a different result from the approximate inversion

scheme of Anderson and Hart (1976). The L1 norm concept

in the inversion process is particularly advantageous for

the sparse and inaccurate seismic attenuation data. The

set theoretical approach (Lee and Solomon, 1975), which

includes the square matrix inverse and linear programming

(L1 norm inversion) was used for the actual inversion.

Inversion results show: (1) a distinctive low-Q

zone everywhere in North America and the Pacific; (2) a

varying thickness for the high-Q lid; 60+20 km (Pacific);

80+20 km (western North America), 130+30 km (east-central

North America); (3) the LVZ and LQZ coincide in western

North America and the Pacific, and overlap in eastern

North America; (4) anisotropy may be a problem in

western North America but is not a problem in east-

central North America; (1 the data do not discriminate'

..
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among possible dispersion relations because errors in Q
- 1

data are too large; (6) the predicted dispersion in the

low velocity zone varies from region to region and

according to the intrinsic dispersion relation assumed.

Thesis Supervisor: Sean C. Solomon

Title: Associate Professor of Geophysics
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CHAPTER I

Introduction

Seismic wave amplitudes attenuate while propagating

through the earth. This fact provides information to

understand the interior of the anelastic earth. Anelastic

properties (seismic attenuation, viscosity, etc.) can be

more sensitive to composition, temperature, pressure,

microstructure and the presence of fluid phases than are the

elastic properties (seismic velocities, density). Therefore,

knowledge of the anelastic properties of the upper mantle

is complementary to knowledge of the elastic properties and

would improve our understanding considerably of the state of

the mantle and the tectonic history of the earth. Toward

this goal, this thesis presents the solution to the inverse

problem of surface wave attenuation over continental and

oceanic paths. While solving the inverse problem and

determining seismic attenuation as a function of depth is

important to problems of seismic wave propagation, earthquake

source mechanisms, and the discrimination of nuclear explosions

from earthquakes, the main motivation of this study is to

better define physically realizable anelastic earth models,

to characterize the lateral variation of seismic properties,

and ultimately to provide clues to the sublithospheric mantle

convection flow patterns. In this study, we will suggest an

inversion scheme which is appropriate for the characteristics

(sparse and inaccurate) of seismic attenuation data. Relating

'" .. .. I I I I I k:
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the seismic observations and linear attenuation mechanisms,

the inverse problem will be recast to take account of the

intrinsic dispersion thac arises from linearity, which has

been often neglected.

The concepts of lithosphere and asthenosphere (Daly 1940)

form an essential basis for plate tectonics (Isacks, Oliver and

Sykes 1968). In strictest terms, the major distinction between

lithosphere and asthenosphere is in their differing long-term

deformation in response to non-hydrostatic stresses. A common

alternative distinction amenable to ready quantification using

seismic waves is that the seismic anelasticity, as measured

by the reciprocal Q of the specific quality factor, is

greater by roughly an order of magnitude or more in the

asthenosphere than in the lithosphere. There is no theoretical

basis for believing that these two different viewpoints will

give, for instance, the same value for the thickness of the

lithosphere. Nonetheless, the mechanisms of viscous deformation

and seismic wave attenuation are both probably thermally

activated and might be expected to show a qualitatively similar

dependence on the temperature distribution in the mantle. More

convincingly, it was the contrast in seismic attenuation that

led to the idea (Oliver and Isacks 1967; Utsu 1966) that

lithosphere is subducted on a grand scale in island arc regions.

The advantages of the surface wave method for studying Q in

the 'arth were summarized by Anderson et al. (1965): the long

period waves suffer less inhomogeneities, more readily sample

Non&-
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the depths in the mantle where the most seismic energy is

dissipated, and allow the geometrical spreading factor to be

evaluated more accurately. Since surface waves are often the

most visible portion of seismograms, it is convenient to

measure their amplitudes.

In a linear, perfectly elastic medium, the amplitude of a

stress wave propagating a distance x is proportional to

ei (kx-wt), where w is the angular frequency, k is the wave

number, and t is time. In a linearly viscoelastic medium, the

wave number of a travelling wave may be considered complex, so

that amplitude is proportional to e-k*x+i(kx-wt), where k* is

the imaginery part of k. Then the dimensionless quality factor

0 and its inverse Q-1, which are the most com mon measures of

attenuation in seismology, are defined as

Q k - 2k(

2k ' k

These quantities will be used as the neasure of attenuation for

most sections of this thesis.

In this thesis we will first consider in Chapter II the

classical linear inverse problem based on the Anderson and

Archambeau theory (1964). Although this traditional theory will

be supplanted in Chapter V, it provides a framework to

investigate an inversion scheme for highly inaccurate and

sparse attenuation data. In Chapter II, observations of

surface wave attenuation in two different regions of North

America are inverted to determine Q- as a function of depth z
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in the crust and upper mantle.

In the traditional theory of Anderson and Archambeau

(1964), the dissipation Q-1 of surface waves over a layered

medium at a given period is equal to the sum of the dissipation

in each layer if we assume Q-2(z) is small:

j=l CL j j

M
= Q (1.2)

j=l R  j- a

where the subscript j is the layer index; the subscripts L, R,

CL and . associated with Q-1 identify the wave types Love,

Rayleigh, P and S, respectively; ctj and tj are the compressional-

and shear-wave velocity in layer j; and cL and cR are Love- and

Rayleiqh-wave phase velocities. With the additional assumption

that the losses under purely compressive stress are negligible,

so that

Q - 4 ( 1)2Q1

(Anderson, Bea Menahem and Archambeau 1965), equation (1.2) can

be expressed as the linear equations

M
a = b3 , i = 1,2, .. ,N (1.3)
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or, in matrix notation,

Ax = b (1.4)

where = QL 1 or QR- at the ith frequency and xj = Q j in

the jth layer.

It is usually assumed that Q 1 is independent of

frequency, though there are several grounds for believing

otherwise (Tsai and Aki 1969; Jackson and Anderson 1970;

Jackson 1971; Solomon 1972a,b). Suppose, therefore, that

-I in layer j is a function of frequency f. Then Qj-1

may be approximated as a polynomial in f (Backus and Gilbert

1968) in the restricted range of frequencies:

Q- (f) = x(l + cj/f + cjf)

where cj' and cj" are constants. If we can estimate these

constants by physical reasoning, Q ".1 is still linear in the

unknowns xj. Define, for fixed c.' and cj",

Pij aij(1 + c/f + c f)

where fi is the frequency of the ith surface wave. Then

equation (1.4) can be written as

Px b (1.5)
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The goal of the inverse problem is to determine a linear

estimator, L, that operates on b so as to provide a volution 2
A

so that the error xtre -x is minimized in some sense:

x Lb

Therefore, equations (1.4) or (1.5) are N linear algebraic

equations with M unknowns, valid if x. 2<<l. Hereafter, we will

discuss our problem in terms of N linear equations with M

unknowns.

Three alternative inversion schemes for treating such a

problem are briefly discussed in Chapter I: 1) the stochastic

inverse, 2) the weighted least-square inverse, and 3) the set

theoretical approach, which includes the square matrix inverse

and the linear programming method.

It is ideal for a discrete linear inverse problem with

inaccurate observations to be considered by a stochastic

process, as long as the statistical structure of the model

parameters and of the noise are known. If these statistical

properties are not well defined or cannot be reasonably

estimated, however, other inversion techniques must be sought.

The weighted least-square inverse applied to inaccurate

surface-wave attenuation data is the most straightforward

approach but often gives a physically implausible negative

solution for (Knopoff 1964). The set theoretical approach
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does not share these disadvantages in that the model parameters

and the noise are constrained to be elements of prespecified

sets.

Since the attenuation data presently available for most

surface wave paths are determined by only a few observations

(sometimes two or three), the uncertainties are usually large

and the error co-variance matrix is not at all well known. In

general, geophysical properties are not perfectly resolvable

vertically even though the data are error free (Backus and

Gilbert, 1968). With large errors, the resolution obviously

degrades (Backus and Gilbert, 1970; Der, Masse, and Landisman,

1970). In modelling the attenuation of surface waves in the

crust and mantle, the resolution is not fine enough to allow

more than a few layers (three or four). In such a circumstance,

an important question, addressed in Chapter II, is the extent

of correlation and incompatibility among the data. Most likely

the observed values of attenuation are contaminated by effects

other than anelasticity and by imprecise measurements. Since

a small deviation in the value of an observation at a certain

frequency will cause a relatively larger error in the solution

space near that frequency than at very different frequencies,

a reasonable criterion for the correlation of the data must be

defined. Correlation and incompatability of the data may be

possible causes of the negative solutions that result from the

least-square sense inversion. Because of this possibility, we

also want to make rules for incompatible solutions to be

excluded. Such conditions as positiveness of the solution and
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that the solution curve fit within error bounds can be a reasonable

filter for the weighted least square inverse to be successful.

These conditions are fulfilled in terms of the square

matrix inverse by requiring:

x. > 0

lb 1 - i -i for all i

where x is a vector of solution parameter space, b is the

vector of observed values, b is the vector of values predicted

by the model x, and a is the vector of data standard deviations.

Moreover, the square matrix idea plays an important role in

choosing layer thicknesses for the model. In a discrete

linear inversion problem, with N equations and M unknowns,

each equation represents an M-1 dimensional hyperplane in M

dimensional solution space. By choosing appropriate

thicknesses, N hyperplanes can be focused to intersect within

a small volume in solution space.

Since the data now available have large uncertainties

and, as we shall see, often show a discrepancy between Love

wave and Rayleigh wave data, it is often better to seek an

envelope of possible attenuation models than to look for a

single 'best' model. To construct such an envelope of models

we use the linear programming method, which has been developed
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mathematically by Dantzig (1963), adapted for geophysical

problems by Johnson (1972) and discussed in theoretical

terms by Sabatier (1977a,b). We mention in passing that other

techniques for finding such an envelope, based on trial-and-

error searches of either a contiruous or discrete model

parameter space, have been applied to the surface-wave

attenuation problem by Burton and Kennett (1972) and Burton

(1977).

In Chapter III, attenuation mechanisms in the Earth's

mantle are reviewed. A particular interest of tbis chapter

is to reexamine the linearity assumption of attenuation

mechanisms with the results of laboratory experiments and

seismic observations. Although the assumption of linearity

in attenuation is the most powerful computational tool for

non-harmonic waveforms, there have been objections to the

linearity assumption for two reasons. (1) Some laboratory

experiments on hysteresis loops for strain show that linear

theories are valid only at strain amplitudes less than 10- 6.

This shows that seismic strain amplitude is marginal in this

regard. For example, a wave of displacement amplitude 1 cm

and wavelength 100 km gives its strain amplitude of 6 x 10- 7

( = 2rA/). (2) Knopoff (1959) argued that most suggested

viscoelastic linear mechanisms of attenuation in the mantle

show a strong frequency dependence which is not observed in any

composite earth material in laboratory or in any seismic

L
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observations. However, Orowan (1967) and recently Liu et al.

(1976) showed that the frequency independence of Q is possible

by a superposition (distribution) of linear viscoelastic

mechanisms of relaxation using a box distribution function.

So far, many such distribution functions have been suggested

to explain various laboratory observations by metallurgists

and polymer scientists. On the occasion of this development,

we should look thoroughly into a linear theory.

In Chapte: IV, the linear theory for attenuation is

discussed in phenomenological (mathematical) terms rather than

physical terms. The basic assumptions of linearity are the

superposition and causality principles. The superposition

principle allows us to treat Fourier components which can

be reconstructed into a waveform. The causality principle

amounts to no 'signal before stimulus'.

The fact nas been repeatedly stressed (Lomnitz, 1957;

Futterman, 1962; Jeffreys, 1965, 1975; Carpenter and Davies,

1966; Randall, 1976; Liu et al., 1976), but not always heeded,

that linear dissipation in solids gives rise to phase velocity

dispersion of first order in Q-1 and that this intrinsic

dispersion is significant for the inversion of surface wave

phase velocities and of normal mode periods. The dispersion-
-I

attenuation relation over a frequency band in which Q is

independent cf frequency has been derived by somewhat

different routes by Kolsky (1956), Lomnitz (1957), and

Futterman (1962). Most physical mechanisms proposed to
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account for dissipation in the earth are of the form of a

thermally activated shear relaxation (Jackson and Anderson,

1970); the dispersion-attenuation relation for a relaxation

is given by Zener (1948). When a continuous distribution of

relaxations is superposed to produce a Q-1 independent of

frequency within a finite frequency band, the dispersion-

attenuation relation agrees with the constant Q- models

(Liu et al., 1976). Because of a growing body of data

suggesting that Q increases with frequency above about 1 Hz

in the earth (see Solomon, 1972; Der and McElfresh 1977),

it is also useful to consider dispersion attenuation relations

in which Q has a power-law dependence on frequency (Jeffreys,

1958, 1965, 1975; Lamb, 1962). In Chapter V, a formulation

for simultaneous inversion of surface wave phase velocity and

attenuation is developed. Such a simultaneous treatment is

preferable to the traditional separate treatment fir

several reasons. The two problems are intrinsically coupled

because of a dependence of phase velocity on the anelastic

structure and a sensitivity of surface wave attenuation to

changes in elastic structure. Further, if linearity holds,

the body wave phase velocity and attenuation at each depth

in the earth are related by integral transforms and in

general are frequency dependent. Finally, the elucidation

of the physical mechanisms governing dissipation is made

easier by treating the intrinsic phase velocity and Q-1 in
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the earth as dependent in the analysis of resolution and

in the inversioni process.

The forward and inverse problems of surface wave

dispersion (or normal mode periods) and attenuation for an

anelastic earth have been treated by several workers. Schwab

and Knopoff (1971, 1972, 1973) developed the formalism for

computation of dispersion and attenuation for surface waves

or free oscillations in a lossy earth and applied their

formalism to several earth models with frequency-independent

velocity and Q-1. Earth models for trequency dependent shear

velocity and Q- based on an assumed set of relaxation

mechanisms and seismic data taken over a broad frequency

band were considered by Nur (1971) and Solomon (1972a).

Carpenter and Davies (1966), Randall (1976), and Liu et al.

(1976) have given an approximate correction to surface wave

phase velocities to account for the intrinsic dispersion

introduced by 2issipation. Using the correction appropriate

to Q-1 independent of frequency in the seismic wave band,

Anderson et al. (1977), Anderson and Hart (1976) and Hart
-I

et al. (1976, 1977) used Q model MM8 of Anderson et al.

(1965) to adjust observed eigenfrequencies, and inverted the

corrected norral mode data sets to obtain earth models.

In Chapter V, we outline the formalism, based on a

generalization of Haskell's matrix treatment, for simultaneous

inversion of surface wave phase velocity and attenuation to
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obtain a complex, frequency dependent earth model. The

approach is mathematically more complete, and gives different

results, than the techniques mentioned above and allows

specification of the intrinsic disperion-4attenuation

relation in the earth as an adjustable input. Revolution

analysis is extended for the above formalism using the two

variable treatment of Der and Landisman (1972).

In Chapter VI, resolving length analysis and extremal

inversion are applied to Love and Rayleigh wave data in

North America, and Rayleigh wave data in the eastern Pacific.

To compare the simultaneous inversion with the data-corrected,

separate inversion of Anderson and Hart (1976), weighted least-

square inversion is performed for Love wave data in western

North America. The results are sensitive to the dispersion-

attenuation relation in the low-Q zone and point toward future

experiments that might define the relation better.
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CHAPTER II

Set Theoretical Approach: Inversion Schemes

2.1 Resume

The geophysical inverse problem aims to find out

possible model3 of earth structure consistent with gross

earth data. Gross earth data consist of mass, moment of

inertia, body wave travel times and attenuation, surface

wave phase velocity, group velocity and attenuation, free

oscillation periodsetc. The earth models we are

interested in are density, S-wave velocity, P-wave velocity,

- and Q- . Most times, we are interested in an inverse

problem for a linear system, starting with a reasonable

guess about one or more structural parameters inside the

earth. The perturbation of a structural parameter is linearly

related to small changes in observables. The relationship

between observables and model can be specified by giving the

kernels Gi(r) for the initial model m(r) as

= f Gi(r) m(r) dr

0

where di(i = 1, ...N) is the difference between an observed

and predicted datum and r is the radial coordinate.

In practice, since the data available are finite, the

data are inaccurate, and our mathematical formulation is

approximate, the solution of the problem is non-unique.

This is the most serious problem in geophysical inverse
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theory. Therefore, an important task is to represent the

degree Qf non-uniqueness in a meaningful way. Backus and

Gilbert (1967, 1968, 1970) showed the optimal way of inferring

an earth model from a given data set. They Aintroduced the

useful concepts of spatial resolution and trade-off between

resolution and error in the solution due to errors in the data.

For non-linear inverse problems, mainly searching and testing

have been used to represent solutions. The Monte Carlo search

(Keilis-Borok and Yanovskaya, 1967; Press, 1970) and Hedgehog

search (Keilis-Borok and Yanovskaya, 1967; Press, 1970)

are two

approaches in this category. Jackson (1973) presented the

Edgehog method to quasi-linear problems to estimate extreme

models. Besides the limitations of linearity, the assumption

of Gaussian statistics of errors may not be valid for a

geophysical data set. The least square criterion is based

on the Gaussian distribution of errors. If this assumption

is invalid, the minimization of the so-called L2-norm is

meaningless. Claerbout and Muir (1973) explored the

application of the Ll-norm to geophysical data analyses. In

the Ll-norm criterion, the sum of absolute values is minimized,

instead of the sum of squares as in the L2-norm. A big

advantage of L1-norm analysis is that, by taking the median,

the effect of a large error in a datum is effectively eliminated.

The linear pnogramming approach adapted by Johnson (1972) to
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inversion of regionalized earth models is an Ll-norm analysis.

Lee and Solomon (1975.) extended this idea as the set theoretical

approach, combining square matrix inversion and the linear

programming me-hod.

2.2 Non-uniqueness, resolution and errors

All geophysical inverse problems involve some degree of

non-uniqueness. Often it is more serious than we believe.

The source of non-uniqueness is the finiteness of data in

number and extert, random errors in data, and some arbitrari-

ness of our physical assumptions. The resolving power approach

of Backus and Gilbert (1968, 1970) provides an excellent tool

for challenging this non-uniqueness. They showed that we can

determine only a smoothbd version of the solution (loss in

resolution). By calculating the resolving length by Backus

and Gilbert theory, we could estimate how the details of a

model parameter could be pursued and how reliable they are.

Details smaller than the resolving length are invisible to

an observer with only M data. When we introduce random errors

in data, the s~tuation becomes worse. Backus and Gilbert (1970)

and Der et al. 11970) dealt with the question of resolving

length with inaccurate data, in which the variance of solution

parameters and resolution (deltaness) are competing objectives.

More than one vz.riable is invovled in an inversion process,

including the depth resolution of the desired variable, errors

in the solutior:, and the separation between the desired and

undesired variables. Backus (1970) and Der et al. (1972)

discussed the to variable case with some examples.
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One of the main objectives of the inverse problem is to

resolve some important features in the structure, for

example, a low velocity zone. Certainly such an objective

is a competing concept against uniqueness of the solution.

At the same time, we may lose the stability of tne problem.

For this reason, for example in the generalized inverse, small

eigenvalues of the kernel matrix are avoided to get a smoother

solution.

2.3 L, and L2 norm

In measure theory, the definition of the Lp norm is

9±ven by (Reiz and Nagy, 1965)

11 M11 p (f lra((r)l P p i d r )p  )/P

or i mij P )l/P
i-l

p 1, 2, ...

which must be finite for valid members of Lp. The reason for

introducing this norm is the intriguing property of the norm

that a certain statistical distribution of error and its

statistical average is related to a certain norm. We define

IIM1 2 by the value of m which minimizes the sum of squared

differences between m and x (called the L2 normn):

N 2
i~m~i2 - m such that I  (m - x is minimum.

2 ,
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Taking the derivative with respect to m and setting it equal

to zero, we find jlml 2 is given by the definition of the

arithmatic mean. Now let us define Iimll 1 by minimizing the

summed absolute ,,alues (called the L1 norm).

N
mil 1 = m such that I J m - x.1 is minimum.

i=1

Again setting the derivative with respect to m equal to zero:

N
0 = sgn (m- x i )

Here the sign fLnction is +1 when the argument is positive, -1

when the arguirent is negative. This defines ilmli 1 as a median.

One other norm lihich is of use with geophysical data, is L.,

(Chebyshev norm) (Parker, 1972). The average defined by

Chebyshev norm as

- lir n = m such that lir ( (m - x.)P) I / p is min.

The midpoint lilT. bisects the distance between the extreme

data points, thus minimizing the maximum error. The

significance cf the L1 norm in the above argument is that a

blunder in data is cast off. The basic assumption behind L2

norm is the Gaussian statistics of error. If this assumption

is broken as in some geophysical data, least square modelling

is not an effective one. When some event is unpredictable

and gives a big error, L norm modelling has an advantageous
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robust effect (Claerbout and Muir, 1973). In many problems

the L2 norm is the natural norm. Most physical quantities

are defined in Hilbert space which is also an L2-norm vector

space. On the other hand, it is often unnatural to square

variables which are already positive, like energy, temperature,

density, Q, etc. When such quantities occur as measurements,

the asymmetric L1 norm may be the natural norm. Asymmetry

comes from the positivity condition. In this case, we have

the usual linear programming technique. The least-square

type inversion methods are based on L2 norm statistics.

2.4 Classifications of Inversion Schemes

Inversion schemes which are in practice so far can be

classified in many different ways. If the system is completely

linear, or nearly linear (i.e., a linearized perturbation is

valid), most of the schemes belong to linear inversion. Non-

linear schemes include the searching techniques, such as Monte

Carlo search and Hedgehog search. The gradient mechod

(Marquart, 1963) is another scheme for non-linear systems.

Jackson (1973) showed a remedy for quasi-linearity by letting

the data residual and 'smoothness criterion' go to extremes

(Edgehog method). In general, extreme model approaches have

a much wider range of linearity.

The single 'best' model has been an ultimate objective in

many inverse problems. However, suppose the number of

measurements is so small that the resolution length exceeds
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the radius of the earth; then we must abandon the original

objective. Instead we only can pursue the possible range of

the model. If data have a large uncertainty, a single best

model may not te meaningful. Searching procedures, such as

Monte Carlo, do not have a single 'best' criterion, but rather

produce extreme models (envelopes).

2.4a Single 'best' Model and Extreme Model Approach

In an inversion process, we desire to recover a best

model from currently available geophysical data. The L1

norm approach nay give an upper and lower bound to the

solution space (envelopes). The least-square approach would

force such a case to have unique answer. The linear programming

technique is a specific L1 norm approach. Extreme model

approaches such as Monte Carlo, Hedgehog, Edgehog and linear

programming give the advantages of exploring the possible

range of solutions and giving some indication of the degree of

uniqueness for a given data set. If there is a large

uncertainty in the data, such as Q-1 data, the best model may

not be meaningfdl.

2.4b Model ard Data Statistics

In a discrete linear inverse problem, we have, in matrix

notation:

Ax = c
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where A is a N x M matrix, and x and c are coluirn vectors with

M and N rows, respectively. In practice, we cannot measure

c exactly, but rather observe b = c + n, where n is some

random noise accounting for errors of measurement. Accordingly

the form of the problem is

Ax + n = b (2.1)

where A and b are knowns, but x and n are unknowns.

1) Stochastic inverse

Suppose we have a priori knowledge of the statistical

nature of x and n, where x, n and b are assumed tc be random

variables related to signal, noise and data processes, so that:

E~x

E T0

Etnn = R
E nn

where ECxj denotes the expected value of x, and xT denotes the

transpose of x. If the signal and noise processes are

independent, then E{xnTJ - E{nxT} 0 and the linear estimator

L is (Jordan and Franklin, 1971)
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*L = R 7 7( AR AT + R )1 (2.2)
- - == x-. ::nn

With L defined above, the relations

x = m + L( b- Am

- -x - =x

(2.3)

x= L L for m = 0
-x

yield a minimum-error covariance matrix S:

S F (x ~x X

(2.4)

Etx mx

From the above two equations, E{x) = E , so x is unbiased.

Therefore, the estimator L provides a global minimum of S.

One other impoitant fact is that the above discussion is valid

for a non-Gaussian error as well as Gaussian. This estimator

is the stochactic inverse which was introduced to geophysical

problem by Franklin (1970) and by Jordan and Franklin (1971).

The construction of correlation operators Rx and Rnn was

discussed by Jordan and Franklin (1971) and Wiggins (1972).

For the noise correlation, Rnn , it is rather easy to form a

covariance matrix if the observational errors are uncorrelated.

In such a case, the covariance matrix has the following

r l ..
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representation:

2o-1 0 0 ... 0

2
0 -2 0 ... 0

nn 0 0 2 0 (2.5)

o o o
20 0 0 .. (7N

2
where the diagonal element a-i is the variance of the i-th

noise component. The construction of the solution covariance

matrix is, however, rather subtle. In a sense, xx acts as a

filtration operator which discards unreasonable sclutions on

the basis of physical constraints defined by the resolving

power of the data. If equation (2.1) is written as a

perturbation equation, then Rxx converges to a scalar times

the identity matrix for perfect resolving power (Franklin,

1970). W'ggins (1972) introduced an N -x N weighting matrix W

assumed to be a diagonal matrix with each element wii

proportional to the dimension of the i-th solution parameter.

2) Weighted least square inverse

Suppose we do not have a prio-' knowledge of the statistics

of the solution, but we do have a nc2se covariance matrix.

Then consider



125.

E In) 0

E InnT j 2 0 0 .. 0- :nn 1""

2
o 0 o .
0 0 20

*0 0 00

Choose x that minimizes

J(x) (9 - Ax) R (b - Ax)

Such a solution is given by

aJ(x) - 2ATR (b - Ax) = 0
ax =nn -

(2.6)

x = (ATR-1 A)- ATR -b
--- :nn - nn -

T -1 -1T -1 1
providing that (A R A) exists. For (ATRnn A)-  to eAist

it is necessary that the dimension of b is not smaller than

that of x. The weighted least square inverse L yields the

minimum error covariance matrix S where
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L A RT -1 A -1 ATR -1
= (ARnn A Ann

and
S -- E t(x- x)(x- x)T ) (ATR-1 A )-1

- - -. = =nn -

In the case of M > N, S does not exist. For this situation,

Lanczos's (1961) analysis and Gilbert's (1971) minimum solution

could be used to solve the underdetermined problem.

3) Set theoretical approach

Suppose, unlike the previous cases, the statistical

structure of neither x nor n is known, but rather x and n are

constrained to lie in specified sets:

x E Ix

n E-- n

where X and are sets in M- and N-dimensional spaces,Xn

respectively. In particular, these sets can be polyhedrons

for L1 norm modelling ind ellipsoids for L norm modelling.

The latter case is the Edgehog method presented by Jackson

(1973). The former case is square matrix inverse and linear

programming technique (Lee and Solomon, 1975).

2.5 Set theoretical approach for attenuation

Let x and n be constrained to lie in specified sets:

XE jQ = t X_ xj > 0, j=l,2, ..

- ~n n 1<j 1 il,2,(2.7)
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whereSIx and?.n are sets in M- and N-dimensional spaces,

respectively. These constraints amount to the condition that

the solution be positive and that the data lie within the error

bounds. The observations b specify N hyperplanes in M-

dimensional so'ution space. These hyperplanes provide a set

of solutions which is required to be constrained bygln such

that

x E- x; b - Ax E (2.8)XX / b _ _n

Since the solution set must satisfy the positiveness condition,

x must lie in the intersection of s x andf2 x/b. Letsisol denote

this intersectio,.i:

x C -?qsol x x/ (2.9)

Two alternative views of the constraints (2.8) lead to two

different but complementary set theoretical approaches. If we

use mean hyperplanes as constraints, the approach is via the

square matrix inverse. If we use extremal hyperplanes as

constraints, ir is via the linear programming method.

2.5a Square matrix method. The linear problem expressed

in the following (1.3) equation may be regarded as one for

which there are N constraints, or equations, and M unknowns.
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M
aijx = b i , i =, 2, .. N

J
Each constraint represents an M-1 dimensional hyerplane. In

M-dimensional space, M constraints will provide a point which

is the intersection of M hyperplanes. There are kCM (M

combinations out of N) number of such points in M-dimensional

space. In matrix terms, from the N x M original matrix, we can

choose NCM square matrices which will provide NCM sets of

solutions, i.e.

H x = b , k = 1,2, .. , (2.10)
_k _ k C

where k and k are an M x M matrix and M-dimensional column

vector, respectively. The solutions that satisfy equation

(2.10) and fit the data to within the error bars will form a

setsx/b. Therefore, the solution domain is defined as the

intersection between 2 x/b andS2 x . By (2.10) the estimate of

the vector x is defined as a set, not as a single vector. We

need a specific way of determining which vector within the

solution domain,s ol, is the proper estimate of x. Naturally.

a reasonable choice of such an estimate is to define x as a

center ofs2so, where the center can be defined in the way of

averaging the elements of the set. The set of solutions must

not be empty if our hypotheses on the system are correct.

Therefore, this technique can be used for P' othesis testing.

The term 'hypothesis' here includes the parameterizations and

the assumptirns used to construct the model. The most sensitive

such hypotheses are the determination of layer thickness and
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an adequate assunption of frequency dependence of Q-.

2.5b Linear programming method. The linear programming

technique (Dantzig 1963) is similar in concept to the square

matrix inverse but differs in motivation. The philosophy is

to build an envelope of possible models rather than a best

model as in the other approaches discussed. To get maxima

and minima of the model parameters, constraints are obtained

from inaccurate observations such that the true value for

each data point is within some tolerance, e.g. the standard

deviation. From each of our original equations (1.3) we get

two constraints:

14
.aijx j  > b. - 0 i , i = 1,2, .. ,N

j=l (2.11)

a..x. < b. + -. , i = 1,2, .. N
j=l i) 3 - 2.

where a- is the standard deviation of ith observation. Each

inaccurate datum restricts possible solutions to the space

sandwiched between the hyperplanes defined by the equations:

a x. = b. - CT.
L J I.2

M m(2.12)
a. max =b+ -
a.x. b.+ T.

i 1, 2, .. N

... .. .

... -- -I i -U
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The region of space containing points satisfying ill 2N

constraints will be the intersection of all these sandwiched

regions and ofSl . This intersection will be referred to as

the solution domainS'so. This setSRsoI is a cortvex set, in

that all points lying on a line connecting any two interior

points also must lie within the set. Further discussions of

this technique may be found in the original development of

Dantzig (1963) and in Johnson's (1972) adaptaticn of the method

to inversion of regionalized earth models.

2.5c Ellipsoids: Edgehog

Now assume thatsix and Sn are ellipsoids:

R x = x - mx ) T -_x ) < 1

g n Tn; ( nTR-I n <

Then
SX/b x; (b - Ax) TR- (b Ax) 1 (2.13)

Ssol x x/b

where

2
R = O1l 0 0 .. 0

0 O 0 .. 0

20 0 0o( N
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With a weighting matrix RS£so is generally an ellipsoid.geerl solpsid

If the principal axis system is used,.x/b is represented by

an ellipsoid because each axis direction is weighted by

eigenvalues.

2.6. 1 Data

The surface wave attenuation observations we shall use to

infer Q-1 structure come from two different regions in North

America. The first set of data, given in Table 2.1, and

referred to aL data set 1 below comes from two-station

measurements ot Love-wave and Rayleigh-wave attenuation between

WWSSN station3 at Longmire, Washington ana Tucson, Arizona

(Solomon 1971, 1972a). The reciprocal of the group velocity

U and the atteniation coefficient k*(= f/QU) are each the

average of independent determinations using southward and

northward travelling waves. Standard deviations are shown at

frequencies for which more than one measurement was possible in

each directiGn. Earthquake sources, all lying approximately on

the great circ3e through LON and TUC, are in Alaska (5), Asia

(2), Mexico (2) and Chile (1). The LON-TUC path samples

primarily the tectonically active Basin and Range physio-

graphic province (Fig. 2.1).

The second set of data, given in Table 2.2 is for east-

central United States and comes from two sources. The first

source consists of two-station measurements (Solomon 1971,

1972b) of QL -1 and QR -I between Rapid City, South Dakota and

Atlanta, Georgia (one direction only) for earthquakes in the

Aleutians (5) and the Caroline Ids. (1).
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Fig. 2.1.Paths used for two-station surface wave Q-I

measurements, shown superposed on the outlines of the

physiographic provinces of the United States. The

shaded reqion is approximately the area represented

by Mitchell's (1973a,b) measurements.
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Standard deviat.ons are shown where repeated measurements were

made. The RCr-ATL path samples primarily the stable platform

region of the Great Plains and Central Lowland physiographic

provinces (Fig. 2.1). The second source of data is Mitchell's

(1973a,b) measurement of Rayleigh wave and Love wave

attenuation from the southeastern Missouri earthquake of 1965

October 21. The determinations of QL 1 and QR 1 were derived

from amplitude measurements at a number of seismograph stations

between the Rocky and Appalachian mountains and between the

Gulf coast and the Canadian shield, based on the assumption

that the properties of individual surface-wave paths are

approximately uniform over the area sampled (Fig. 2.1).

Uncertainties are assumed for Mitchell's reported values of k*,

and Q-I was calculated using the surface wave group velocities

from McEvilly's (1964) model for central United States. The

measurements of Solomon (1971, 1972b) are referred to as data

set 2 below. A third data set is formed by combining Solomon's

observations with the shorter-period measurements

(f > 0.04 Hz for QL 1 , f > 0.0286 Hz for QR - ) of Mitchell

(1973a,b).

The phase velocity partial derivatives aij (equations 1.2

and 1.3) were calculated using computer programs written by

Harkrider (19b4). For western United States, the plane-layered

velocity-density model used for these calculations were taken

from model 35CM2 of Alexander (1963) above 125 km and from
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models NTS N3 of Julian (1970) and US 26 of Anderson and

Julian (1969) below that depth. For east-central United

States, the (isotropic) velocity-density model of McEvilly

(1964) was adopted.

To apply the inversion techniques of the preceding section

to those observations of surface wave attenuatio', resolving

power analysis is an essential step. We then have to

establish criteria to obtain independent information about

the model and to detect incompatible observations. Finally we

may solve the inverse problem.

2.6. 2 Resolution

Study of the resolution and error of observational

measurements is useful in selecting the manner in which a

continuous function of depth 0 -l(z) can be approximated by a

function constant within a small number of layers, so that our

linear system is overdetermined. Such a study can also yield

criteria for estimating the reliability of the inersion

results. In the set theoretical approach, it is required that

solution vectors be independent. An excessive number of layers

can cause instability of the inversion and an interdependence

of solution vectors. Backus and Gilbert (1967, 1968) have

treated the general problem of vertical resolution from a finite

set of error-free observations. If we take the large observa-

tional errors into consideration, the resolution is considerably

worsened. The relationship between observational errors and
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resolution has been discussed by Der et al. (1970), Backus

and Gilbert (1970) and Wiggins (1972).

In the scheme of Der et al. (1970), the idea is to

minimize simultaneously both the variance of the linear

combination xk of observations that gives the best estimate of

some physical parameter of interest in a certain layer k and

the dependence of xk on the parameters for layers other than

the kth. This is accomplished by minimizing the function

M
E k v-?r xk + w j e.2, j k (2.14)

j=1

subject to

N= _ck ai = 1.
ekk ki ik

where

Nejk= c a , j =k
i=l ki ij

and where wj is a layer thickness, aik is the partial

derivative of the ith observation with respect to the parameter

of interest in layer k, noimalized with respect to the layer

thickness, ekk is delta-function-like and ejk is the deviation

from a delta function, and the cki are constants to be
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Fig. 2.2 Resolution of surface wave attenuation data at

selected depths for (a) data set 1 (western United

States), (b) data set 2 (east-central United States),

(c) data set 3 (east-central United States. The

letter v shows the center of the layer k fcr which

equation (2.14) is evaluated.
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determined subsequently. The quantity Y is an adjustable

parameter that determines which of the two minimizations is

to be more effective. If the desired value for var xk is

too small or too large, i.e. / is chosen to be toz small

or too large for the two minimizations to balance, the result

will not be physically meaningful. When/Y is zero, the

problem corresponds to the case of error-free observations.

The resolution analysis of Der et al. (1970) applied to the

surface wave observations introduced above allows us to

assess the vertical resolving length of the data. The

functions ejk are plotted for selected layers k in Fig. 2.2a

for data set 1, Fig. 2.2b for data set 2, and Fig.2.2c for

data set 3. The parameterfg in 2.14 is adjusted so that the

variance of xk is 0.5. From Fig. 2.2 it may be observed that

the resolving power of QL -1 data is generally poorer than for

QR- I data. We estimate from the suite of resolving lengths

that the allowable number of layers in a model for Q - is

3 or 4 for Love and Rayleigh waves, respectively, in data sets

1 and 3, and 2 or 3 for Love and Rayleigh waves, respectively,

in data set 2.

Because the above analysis is valid only fcr independent

observations, we can get only a rough idea about the layer

thicknesses without knowing the co-variance matrix of error.

Since the number of layers is few, determination of the layer

thicknesses .s very important. Therefore, it will be

interesting to consider the limitations on layer thicknesses
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imposed by the set theoretical constraints.

A simple example will serve to show the utility of a

geometrical picture of the constraints. In M-dimensional

space, these constraints are in general hyperplanes. For

ease of visualization, let us imagine a 2-dimensional solution

space, which is not all that unreasonable since there is only

one significant jump in the value of Q 1 at the boundary

between lithosphere and asthenosphere. In that case the

constraints are straight lines in the solution plane. The

slope of a family of lines is determined by the matrix

elements and the axis-intersections are determined by the

observations.

To illustrate this idea, we take the case of nine

representative Love wave attenuation data from Table 2.1. If

we choose the boundary between layers at 65 km or at 50 km

depth, the respective 2-dimensional representation of

constraints ii solution space are shown in Fig. 2.3, where the

solid lines correspond to the case of the 65 km depth boundary

and the dashed lines correspond to the case of the 50 km depth

boundary. As we can see, the family of solid lines (constraints)

provides a set of converging points in the domain of positive x1

and x2 (first quadrant) while the other family does not. This

exercise implies that a bad choice of the layer thickness will

make the hyperplanes nearly parallel and the solution domain

empty. In Fig. 2.3 we have a clear choice between two-layer

parameterizations. Graphic representation is impossible for
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Fig. 2.3. Constraints in two-dimensional solution space.

A two-layer - model is assumed. The boundary is at

65 km depth for the constraints shown as solid lines,

50 km depth for those shown as dashed lines. The number

beside? each line indicates the selected datum from
-l

Table 2.1 (QL , western United States). (Insert) An

amplified view of the dotted region. The shaded area

represents the solution domain. It may be seen that

constraints 1 and 2, and constraints 5, 7, 8 and 9 are

correlated; constraint 6 is incompatible.
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the M-dimensional case, but we can in analogous fashion

optimize the M layer thicknesses by use of the square matrix

inverse. That is, by choosing an appropriate set of layer

thicknesses, hyperplanes can be focused in solution space.

As a measure of focusing, we define a focusing index fo =

pj/qj, where pj is the percentage of acceptable solutions from

the square matrix inverse and thus is related to how well

models with such layering can fit the data, and Ij is the

volume of the solution domain in M-dimensional solution space.

The index j loops over all possible choices of the set of

layer thicknesses. Some examples of the dependence of f. on

the layering in the Q-1 model are given in Table 2.3; the

highest value of fo is the preferable layer parameterization.

2.6. 3 Correlation and Incompatibility

Generally, each observation does not contrioute

independent information about the model. This is because of

the high correlation of the partial derivatives of surface

wave phase velocity at near frequencies. Correlation gets

even higher when the observational error is large. According

to the resolution analysis in the preceding section, the

number of layers allowed in the model is few (three or four).

Therefore, our problem is overdetermined, i.e. N is 20 or more

and M is three or four. Somehow, we need a criterion that

two data are independent or uncorrelated for a 'simple'

co-variance matrix to be constructed. The meaning of 'simple'

- -- . . . . . . . . . l . . I , . . .
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TABLE; 2.3 Use of the square matrix inverse to fix layer

thicknesses for a 3-layered Q-1 model: Love

wave data, western United States

Layer interface Focusing index f

depths, km

17, 64 235

15, 74 122

21, 69 202

21, 74 71

21, 64 418

25, 64 290
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matrix is a weighting matrix chosen by reasonable judgement

to utilize the weighted least square inverse. On the other

hand, if the observational value of Q-1 (f) is cor.taminated

by effects other than the anelasticity of the Earth or by

rough measurements, some data will be incompatible. To be

more precise, we define 'correlated' and 'incompatible' data

in terms of square matrix resolution:

Two data are correlated if their correspondxng hyperplanes

in solution space do not intersect inside the fetsible solution

domain but do contribute to build the domain. A datum is

incompatible if its hyperplane does not contribute to build

the domain of feasible solutions. These definitions are

illustrated in Fig. 2.3.

We may pursue the geometric picture of each datum as a

constraint somewhat further. Equation 1.3 represents a set of

M-1 dimensional hyperplanes. A pertinent geometrical parameter

of a pair of hyperplanes is the angle between them. The angle

between hyperplanes is defined as

M
aija jk

cos 8 ik - A2 
2

aij a k
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This angle is taie coefficient of correlation if observations

are error free. With observational errors in consideration,

we define the correlation length (in the same units as the xj)

as

a a. a o 1/2
Di= i i1+2 1 cos i

sin sin 0ij sin ijsin 0 ij

where 6 ij is the angle between ith and jth hyperplane, and ri

and aj are thp standard deviations of ith and jth observations

(see Fig. 2.4). The same value of error in an observation will

cause a relatively different error in the solution space, in

proportion to the correlation length. This is the geometrical

meaning of out definition of correlation (refer to Table 2.4).

As an example, for the same selected QL - data in western

United States, square matrix resolution gives the following

results with a three-layer model (boundaries at 20 and 65 km;

see Table 2.3).

(1) Twenty-one feasible solutions exist among 84(= 9C3 )

possible solutions.

(2) Data 1 and 2, and data 8 and 9 are correlated.

(3) Data 6 and 7 are incompatible with the remaining data.

The incompatible data lie in the range of surface-wave

periods where a 'minimum' in Q-1 haa been noted (Trggvason

1965; Tsai and Aki 1969). Tsai and Aki (1969) explained this

minimum as due to frequency-dependent Q-1 in the lithosphere.
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Fig. 2.4. Correlation length D,.. between ith and jth1)

constraints. (-i and 0-. are the standard deviations

for the ith and jth observations, respectively.
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'-1

TABLE 2.4 Correlation length Dij between selected 
QL data,

western united States.

2 3 4 5 6 7 8 9 t/ j

20.57 3.68 1.12 0.58 1.22 0.30 0.28 0.27 1

8.65 1.64 0.74 1.46 0.34 0.32 0.31 2

6.36 1.79 2.70 0.66 0.57 0.54 3

7.67 7.37 1.24 0.97 0.86 .4

56.23 2.99 1.89 1.55 5

15.89 7.93 5.99 6

29.87 12.92 7

109.46 8
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However, the question is still open because no model can

explain nearly nero attenuation. One possible explanation

may be a constructive interference in the period range of

minimum Q due to scattering. At any rate, the occurrence

of incompatible data in this period range (20-25s) is not

accidental. Therefore, we can assume that data 1, 3, 4, 5 and

9 are independent (uncorrelated) and we could apply the

weighted least square inverse using the co-variance matrix, R:

2

2 0 0 0 0

0- 0 0 0
3

0 0 0 0R CF0-4
= 2

0 0 0 0-5  0

0 0 0 0 2r

2.6. 4 Linear ?rogramming procedure

The essence of the linear programming problem is composed

of fcur parts.: 1) a set of M independent variables; 2) a priori

bounds on thos3 variables; 3) a set of constraints, cast in

terms of linear equations and inequalities; 4) a linear

function, called the object function, which is to be minimized

subject to thcse constraints. The independence of the

variables (solution parameters) as discussed above in terms

of resolution analysis indicates that



158.

1) By square matrix resolution with Love wave or Rayleigh

wave data, the optimum layer boundaries are at 20 -, and 85 km

depth for western US (data set 1), 135 km depth for data set 2

(east-central US) and 25 km and 135 km depth for data set 3.

Hereafter we refer to these as major boundaries. Note these

depths are uncertain by several kilometers.

2) The resolution of Rayleigh wave and Love wave data

together is improved over that using either set of uata

separately.

Therefore the number of degrees of freedom, or the number

of independent variables, are flexible to a certain extent

due to the relaxation of constraints using extremal hyperplanes

and the above result 2. We will increase the number of

boundaries carefully until the fit to the data is no longer

improved over that using only the major boundaries. The result

of this procedure is a 6 layer Q - 1 model in western US and 4

and 5 layer models in east-central US (data sets 2 and 3,

respectively). During the process of increasing the number of

layers, the original 2 or 3 layer model with major boundaries

is used as a guide to reduce large fluctuations in %-1 between

successive layers. If the 3 layer model parameter xi is split

into two others, x i ' and xi", then

1oi  < Xi < upi
* N

1o. < aixi + bix i  ( uPi
<n
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where loi and upi are lower and upper bounds of the model

parameter xi , d-rived from the linear programming procedure

using only major boundaries, and ai and bi are the fractions

of the original layer allotted to the two new layers. The

a priori bounds used for the initial linear programming

inversion, are defined as 0 < xi < 100 (where xi =100/i).

The object fun:tion is defined as

z -x.

where + is for the minimum and - is for the maximum of the

envelope. Data indicated to be incompatible by square matrix

resolution analysis are not included in the linear programming

inversion.

2.6.5 Resulc and discussion

The envelopes of the attenuation models Q W(z) resulting

from the final linear programming inversion and illustrateO in

Fig. 2.5 are given in Table 2.5. The corresponding envelopes

QL-I(f) and QR -(f) are shown in Fig. 2.6 together with all

data used in the inversion.

For Love wave attenuation in western United States, the

greatest disagreement between observed and predicted values

comes from the period range 15-25 s. For Rayleigh wave

attenuation in the same region, on the other hand, the

disagreement comes from the period range between 30 and 40 s.

These two mismatches mean that a frequency independent
./



I

160.

Fig. 2.5. Envelopes of attenuation models for (a) data

set 1 (western United States), (b) data set 2 (east-

central United States), (c) data set 3 (east-central

United States).

A
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TABLE 2.5a Envelope of attenua'tion model, 100/QV western

United States

Depth, km min max

0-21 0.43 0.54

22-45 0.0 0.05

46-84 0.0 0.03

85-104 3.50 4.87

105-160 4.95 5.73

161-350 2.60 2.69

TABLE 2.5b Envelope of attenuation model, 10j,-'% east-central

United States (data set 2)

Depth, km min max

0-72 0.06 0.08

73-134 0.0 0.09

135-212 2.19 2.48

213-350 2.29 2.57

TABLE 2.5c Envelope of attenuation model, 100/Q,, east-central

United States (data set 3)

Depth, km min max

0-9 0.29 0.86

10-23 0.25 0.84

24-52 0.0 0.15

53-134 0.0 0.17

135-350 1.09 2.51
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Fig. 2.6. Surface wave attenuation predicted by envelope

of models in Fig. 2.5 (solid lines). Triangles and

circles represent the observed values (Table 2.1 and

2.2); open symbols are for incompatible data. Love

and Rayleigh wave Q are given in (a) and (b) for

data set 1, (c) and (d) for data set 2 and (e) and

(f) for data set 3.
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model can never simultaneously approach a perfect fit to both

sets of data. The same statement is true of plausible
-1

frequency-dependent Q models (Solomon 1972a), e.g. models

obtained by inverting equation 1.5. This diffictlty is related

to the minimum in QL -1 and QR - versus period noted earlier

(Tryggvason 1965; Tsai and Aki 1969) and to other wiggles in

the attenuation curves. The wiggles in Q R, which are

especially pronounced, may possibly be a scattering effect.

The total travel length L is 2000 km and the wavelength X

is 60-150 km, so kL = 80-200, where k is the wave number. For

scattering from weak heterogeneities in elastic properties and

density to be negligible, ka must be less than 0.4, where a is

the correlation length or, roughly, the characte:istic dimension

of the heterogeneities (Chernov 1960). Since ka < 0.4 would

require a .< 4-10 km, scattering is not likely to be a negligible

effect.

For east-central United States, the frequency independent

model provides an acceptable fit to the data except for a

discrepancy between QL- I and QR- I in the period range 30-36s.

The high attenuation of Love waves in that period range may

either be due to higher mode interference, more likely for Love

waves than Rayleigh, or due to anisotropy of the attenuation

mechanism.

Several results of the Q -l models in Table 2.5 and Figure 2.5

are worthy of comment. It is clear that the lithosphere, iden-

tified with low Q-1, and the asthenosphere, identified as a
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-1

deeper zone of high Q , both differ between western and

central or eastern North America. The lithosphere is thicker

and Q- in the asthenosphere is significantly less in east-

central than in western United States.

We obtain lithosphere thicknesses of 80+20 km and

130+30 km for western and east-central United States,

respectively. The range in thicknesses comes from separate

inversions of Love and Rayleigh wave attenuation and is

conservative in that inversion using both sets of data gives

a narrower range of thicknesses for both regions. These

values for lichosphere thickness are not out of line with

those inferred from the distribution of seismic velocity with

depth using either refraction results (Green and Hales 1968;

Julian 1970) or dispersion data (Biswas and Knopoff 1974).

The value for o -I in the asthenosphere differs by a

factor of about 2 between the two regions, in agreement with

the results of Solomon (1972a). Both this difference in

-1 and the different lithosphere thickness can be explained~B

by a modest temperature contrast in the upper mantle between

the two areas (Solomon 1972a).

Some fine structure is notable in the models. A decrease
-i

in Q with depth in the lithosphere is resolvable from data

sets 1 and 3, a result also obtained by Mitchell (1973b).

The interpretationof this conclusion depends on the seismic

loss mechanisms. but the models are consistent with a closing
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of fluid-filled cracks or a decrease of volatile content

with depth in the lithosphere. It also appears that a

decrease in 0 below about 160 km is resolvable in

western United States.

In summary, there are difficulties in modelling the

attenuation of surface waves that arise from an assortment of

reasons: 1) the loss mechanism at high pressure and

temperature in the Earth is imperfectly known; 2) the

measurement error is large and data are sparse; and 3)

attenuation by mechanisms other than anelasticity is not

negligible and not always separable. At this stage, under

the assumption that the interference to the true anelastic

attenuation is localized to some period range, our rules of

data correlation and incompatibility are a reasonable filter

to sort out which measurements are suitable for inversion.

The Q, -I models that result from the inversion offer several

insights into the nature of the lithosphere and asthenosphere.

In the next three chapters, we will formulate the

simultaneous inversiont of not only surface wave attenuation

but also surface wave phase velocity. A major justification

for this approach is because the anelastic dispersion from

linearity seems to be important in the inversion process of

surface waves. The validity of linearity is first reviewed

in terms of the possible mechanisms for seismic-wave damping

in the earth's mantle.
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CHAPTER III

Attenuation Mechanisms in the Upper Mantle

3.1 Resume

The devi.ations from perfect elastic behavior of a sample

material in the laboratory have yet to be understood. The

situation in the earth's mantle is expected to be at least

as complicated. A stress wave propagating through a non-

elastic medium experiences an attenuation of amplitude due

to various processes. These processes have not been well

understood in terms of atomic or ionic (microscopic)

properties of the material; rather they have been lumped under

the heading internal friction.

Standard models have been used to describe internal

friction in terms of various combirations of springs (perfect

elasticity) and dashpots (Newtonian fluid). The Maxwell

solid, the Kelvin-Voigt solid and the standard linear solid

are examples of such models. Surely, these standard models

do not explain reality most times. Orowan (1967) suggested

that in a composite material, such as the earth's mantle, it

is necessary t3 invoke the more general arrangement of springs

and dashpots for each molecular constituent; the standard

linear solid with an additional dashpot corresponding to the

viscous deformation. Such a general arrangement does not

explain the direct observations regarding the non-elastic

properties of the earth: the attenuation of seismic waves.
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However, it provides a diagrammatic convenience and a way

of thinking macroscopically. Although most laboratory

experiments are performed at conditions different from the

earth's mantle, they may provide sound bases for a 'thought

experiment'. The possible theoretical mechanisms of seismic

attenuation have been reviewed at length by Jackson and

Anderson (1970). Among the many suggested, the possible

mechanisms in the asthenosphere are of greatest interest

since most absorption occurs there. Solomon (1971, 1972)

thoroughly examined partial melting in terms of Walsh's

model (1968, 1969) and Jackson examined a grain boundary

relaxation model (1969, 1971). In this chapter, we are going

to review some aspects of the attenuation mechenism which will

be important in the following chapters.

3.2 Seismic and labordtory observations

One of the earliest and most important observations in

the laboratory was that Q is substantially independent of

frequency in a solid at low pressures and temperature. Since

Linsay (1914) first made this observation, many investigators

have verified the fact with different materials (composite

non-metals) over a broad range of frequencies. For earth

materials, the conclusion is the same. Knopoff and Porter

(1963) showed that in granite the attenuation of Rayleigh

waves over the frequency range 50-400 kHz appears to have a Q

nearly independent of frequency. At higher frequencies, a

....- ...-. .



177.

fourth power law of attenuation becomes dominant in their

observations, which suggests a Rayleigh scattering process.

Similar results have been observed in limestone by Peselnick

and Outerbridge (1961). Born (1941) studied sandstone which

had varying amounts of interstitial water injected into the

sample. The interesting result is that the dry rock has a

frequency-independent Q while the wet rock has a Q increasing

linearly with frequency. Another important observation is

that 0 for rock, again, at low pressure and temperature, is an

order of magnitude lower than for single crystal materials.

Peselnick and Zietz (1959) indicate that Q for calcite is about

1900, a factor of 10 greater than in limestone, which is

polycrystalline calcite. This suggests that grain boundary

effects are likely important and show the same frequency

dependence of 0 for single crystals and composite materials.

Few observations on the behavior of Q at near melting

temperatures have been performed. Mizutani and Kanamori

(1964) measurcd the elastic and anelastic properties of a

Pb-Bi-Sn-Cd alloy of melting point 720C from 10 to 1300C at

near MHz frequencies. They observed that the elastic

velocity decreases with temperature. The decrease accelerates

near the melting point and is most pronounced for shear waves.

The quality factor, Q, for P-waves increases almost linearly

with frequency between 0.5 and 3.0 MHz. Kuroiwa (1964) and

Spetzler and Anderson (1968) studied attenuation in the

various forms of ice at temperatures near the melting point.

IL - - -----------
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They found that the introduction of NaCI into the ice

broadened the peaks, shifted them to lower temperatures and

increased the peak damping. The background damping,

attributed to grain boundary effects, increased with

increasing content of an impurity. Goetze (1969) discussed

the behavior of metals at near melting temperature.

The intrinsic attenuation of rocks as a furction of

temperature and pressure is not known. Some laboratory

measurements of hysteresis loops for strains no less than

10-6 shows that the attenuation is dependent on the amplitude

of the strain .(McKavanagh and Stacey, 1964). This suggests

that linear theories are valid only at strain amplitude less

than 10 - 6.

For seismic observations, the most commuon difficulty is

that the influence of scatteririg due to heterogeneity cannot

be removed. Earlier observations by Collins and Lee (1956) and

by McDonal et al. (1958) were measured at a smnall number of

stations in relatively homogeneous short range of less than 30 feet.

By no surprise, their observations in the field gave results

comparable to those obtained in the laboratory on homogeneous

rocks. Their main finding was that Q is nearly independent

of frequency over the frequency range 100 to 1000 Hz (50-550

Hz for McDonal et al.). Among many observations by other

investigators, Anderson and Kovach (1964) observed multiple

reflections from deep focus earthquake in Brazil recorded in
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Peru. They indicated that for the upper mantle Q in shear is

about 160 and for the lower mantle about 1450, and Q is

roughly independeat of frequency over the range 11 to 25

seconds for the entire mantle.

Since that time, the observations of Love and Rayleigh

wave attenuation has been considered to be more reliable than

body wave observations, because the surface waves are less

subject to the effects of scattering by inhomogeneity.

However, the interprete.tion is more complicated due to strong

dispersion. Benioff et al. (1961) measured the attenuation of

Rayleigh waves from the Chilean earthquake and su~imarized that

there is significantly more attenuation in Love waves than in

Rayleigh waves. 'This may be an indication that the attenuation

due to pure conpressive modulus is negligible. The presently

available surface wave attenuation data covers North America

(Solomon, 1971; Mitchell, 1973, 1975), Eurasio (Yacoub and

Mitchell, 1977; Burton, 1974), the Pacific Ocean (Mitchell

et al., .976) the Atlantic Ocean (mostly) (Tsai and Aki, 1969).

Also there are many useful great-circle path data (e.g.,

Kanamori, 1970: Dziewonski and Landisman, 1970). These data

clearly show a regional variation over much of the commnon

period range. One cause is the varying lithospheric

thicknesses reaionally. For example, the lithosphere

thickness in western U.S. (a tectonic region) is about 80 km
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while that in eastern U.S. (a stable shield region) is about

130 km (see Chapter II) and that of the average Pacific

ocean is 60 km (Mitchell et al., 1976). Recent body wave

observations (Solomon, 1972b; Der and McElfresh, 1977)

suggest that 0 increases with frequency above 1 Hz.

3.3 Nonlinear or linear attenuation process?

Knopoff and McDonald (1958) argued that the observed

'constant Q' for seismic wave attenuation is incompatible

with linear theory. They developed a non-linear wave

equation in which dry friction is the attenuation mechanism.

McKavanagh and Stacey (1974) suggested that a cusp at the

end of stress-strain hysteresis loops at strain amplitudes

down to 10-6 may be evidence of non-linearity. The question

of linearity vs. non-linearity is very important because the

linear theory makes the general problem of attenuation of

non-sinusoidal waveforms mathematically tractable. In other

words, waves -Ian be superposed by Fourier components without

modifying one another. Kogan (1966) criticized the non-linear

theory based on experimental evidence. Savage end Hasegawa

(1967) presented similar criticism. Lomnitz (1957, 1962)

suggested a linear theory which attributes the attenuation of

elastic waves in polycrystalline materials to logarithmic

creep. The theory predicts both the magnitude of Q and its

frequency independence. McDonal et al. (l58) and Knopoff

and Porter (1963) have investigated the attenuation of a

k1 - - - .
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seismic pulse rather than the usual harmonic waves. The

procedure employed in both experiments was to analyze the

pulse into its Fourier components and then determine Q as a

function of frequency from the attenuation of various

Fourier comporents. The magnitude of 0 determined from the

Fourier components and insensitive frequency dependence

suggest that the superposition principle was applicable and

therefore, the mechanism of attenuation linear. Orowan

(1967) and Liu et al. (1976) suggested 'constant 0' observation

can be explainable in the linear theory assuming the presence

of a continuous distribution of linear visco-elastic elements.

Above all, non-linearity becomes apparent in waves of

extremely large amplitudes and so has little relevance to

seismic waves. For example, a wave of displacement amplitude

1 mm and wavelength 10 km gives its strain amplitude of

6 x 10- 7 (= 2TA/X). One more possible argument for non-

linearity is the non-existence of body wave dispersion since

dispersion due to absorption is a characteristic of the linear

theory. Alt.iough this question will be addressed in the next

chapter, the frequency dependence of o may provide the answer

to such an -rgument, a point also suggested by many others.'

3.4 Solid friction and viscous damping

Perfectly dry rock is not expected to occur in the earth

because of the presence of ground water, of hydrothermal

4 m " -
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solution or, at greater depth, of partial melting. As Born's

experiment (1941) shows, the presence of a fluid phase in

rock causes substantially lower 0 and a Q of increasing

linear dependence on frequency. Solid ('dry') friction was

described by Walsh (1966) as crack surfaces in contact slide

relative to one another. It is rather insensitive to

temperature but highly pressure dependent. Solid friction is

independent of velocity and therefore is intrinsically

frequency independent but depends on amplitude. It cannot be

described in terms of viscoelasticity but may he of the

static hysteresis type. The amplitude-insensitive crack

surface friction is not well explained on the basis of

Amonton's Law (according to which T =1.p where T is the

frictional drag, . the coefficient of friction, and p the

normal pressure between the rubbing surfaces). Solid friction

may be limited to describe the non-elastic behavior near the

surface of the earth where temperature is nct a main factor.

A conspicuous feature of seismic velocity profiles for

certain parts of the upper mantle is the upper mantle low

velocity zone (LVZ). Is the LVZ in the upper mantle a strong

indication of the presence of fluid phase, probably partial

melting? Or can a composition change or a pha.se change be

hypothesized to explain the LVZ? Gordon and Davis (1968)

suggested that the LVZ is principally due to .nterface

inelasticly, which can persist to great depth due to the

presence of fluid phase. They claimed that thi.s is a unique
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explanation of the simultaneous occurrence of the LVZ and

the low Q zone (LQZ) due to modulus defect. In such a case,

low Q results from interface friction rather than from the

fluid itself. However, according to Born (1941), a small

amount of water injected into the interstitial region in

sandstone increases substantially the internal friction.

Therefore, the presence of the fluid itself should be an

important factor .n increasing the internal friction. Many

authors suggested that the low velocity zone may be due to

partial melting Df mantle materials. Partial melting in the

earth's mantle iu likely to have the character of an inter-

stitial fluid embedded in a host matrix, since shear waves

are transmitted through. A more pronounced minimum of shear

velocity than tha: of P-wave velocity in the low velocity

zone indicates the presence of melting. Various melt models

of damping have been suggested for the earth's mantle by

Mavko and Nur (1975) and O'Connell and Budiansky (1977).

Isolated penny-shaped cracks with melt (short time-scale

damping), interconnected cracks with short range melt flow

(intermediate time-scale damping), and large scale melt

diffusions (large time-scale damping) are considered by

1*avko and Nur (7.975).

3.5 Hysteresis, resonance, scattering and relaxations

The mechanisms likely to be responsible for the

attenuation of seismic waves are classified in four categories.



184.

Quickly we may rule out hysteresis, resonance and scattering,

for the dissipation mechanism in the earth mantle. Although

scattering does not reflect the anelastic properties of

medium, it is quite important to recognize the scattering

effect when inhomogeneities are comparable in scale to the

wavelength of the seismic waves. Ultimately, it will be

very important to remove the scattering effect to improve

the quality of seismic amplitude data. However, we may avoid

this difficulty when we choose rather homogeneous structures

and use longer wavelength (longer period) data for a study of

the damping mechanism at greater depth (the mantle).

Granato and LOcke (1956) proposed that a pinned edge

dislocation may act as a violin string with a damping force

proportional to its velocity. This type of resonance internal

friction is strongly dependent on average loop length and

proportional to the dislocation density. The internal

friction will increase with temperature, as thermal unpinning

will increase loop length, even though the dislocation density

will decrease with temperature by annealing. However this

type of internal friction due to resonance appears only at

high frequencies and is irrelevant to the seismic problem.

Solid friction across cracks was considered by Walsh

(1966) as mentioned in the previous section. This mechanism

adequately explains measurements at low pressure (Birch and

Bancroft, 938) including the frequency independence of

fo t .
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internal friction and its decrease with pressure. However,

most cracks in dry rocks would be closed under modest

pressure (less than about 10 kbar). In wet (partially

molten) rocks, fluid might persist to keep cracks open under

mantle pressures. However, at high pressure, the internal

friction due to solid friction likely will be minimized., and

viscous stress relaxation may dominate internal friction. As

discussed in section 3.4, this type of mechanism due to

static hysteresis may depend on amplitude and belongs to the

class of non-linear theories, which are not favored by seismic

amplitudes, though not ruled out.

Most linear attenuation mechanisms are a form of

relaxation process. A relaxation process is a characteristic

of viscoelastic material (standard linear solid), in which

no irreversible deformation is undergone. In such.a material,

internal friction has the form:

u  r WT
= Mu 1 + (WT) 2

where Mu is an unrelaxed elastic modulus, Mr is a smaller

relaxed modulus, Ois angular frequency, and ris a

relaxation time. Notice that the peak internal friction

occurs atL0"2= 1. Zener (1948) considered a relaxation in

a two component system where a viscous phase is embedded

in an elastic natrix. The remarkaL.e feature of such a two
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component system is the large anelastic effects due to a

small amount of viscous material. Another feature is the

wide variety of types of relaxation spectra. If all the

localized viscous regions had the same size and shape, we

would expect a concentrated relaxation spectrum. Rather,

observed behavior indicates a distribution of the size and

shape of the viscous regions. Walsh (1969) made more specific

assumptions for two phase media. Solomon (19,;]) applied this

theory to partial melting for the upper mantle of western

United States.

The importance of grain boundary effects in seismic

attenuation was stressed by Peselnick and Zietz (1959),

Jackson (1969) and Jackson and Anderson (1970). Also

important is high temperature background relaxation (Jackson,

1969; Jackson and Anderson, 1970). Most physical mechanisms

proposed for seismic attenuation in the earth's mantle are of

the form of a thermally activated relaxation end all these

mechanisms are distributed with a largely unknown distribution

function.

3.6 Distribution function of relaxation times

The 'standard linear solid' gives a Debye peak (bell-

shaped) absorption spectrum with peak at the frequency

determined by WT = 1, where Tis a relaxation time. For most

materials, it is too simple to represent physically meaningful

.. .
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viscoelastic behavior. As Orowan (1967) explained, in the

case of soda -glass, the elementary process of relaxation

(or viscoelastic creep) is the jump of a sodium ion from one

cell to another. This cannot be described by a dashpot. A

different ion may be activated with a different energy by

a different st:ess. Therefore, there may be various activation

energies and strain contributions which can be represented by

different viscoelastic sthemes. To satisfy a frequency

independent Q, the activation energy spectrum, or the

relaxation time spectrum, should be distributed. Various

distribution functions have been proposed to explain

empirical curves by metallurgists and polymer scientists.

To understand the usefulness of these distribution functions,

the most simple and frequently used functions are given in

the following.

3.6a Box distribution

According to Becker (1925) if the distribution function

of activation energies is constant, then viscoelastic creep

is logarithmic and is frrquency insensitive over a wide

range of frequency (Becker theorem ). Orowan (1967)

interpreted Becker's theorem in terms of the 'standard linear

solid'. Recertly, Liu et al. (1976) demonstrated that a

continuous distribution of relaxations could be superposed

to produce a frequency independent 0 over seismic frequencies
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using a linear viscoelastic model. In all of --he above cases,

a relaxation function 0() is expressed as a .uperposition of

the elementary relaxation functions e st with distribution

density N(s),

t N(s) e-st ds (3.2)'0

N(S) = A / s for sl< s < s2

1 0 otherwise

where A is a constant, s is the relaxation frequency (Becker

used the term 'relaxance' for s). Liu et al. (1976) chose

S1 and s2 in such a way that the frequency range of seismic

interest is completely covered between sI and s Becker

was rather in the position of explaining empirical logarithmic

creep functions in terms of relaxations which have been shown

by numerous creep experiments. Becker mentioned sl as 'the

lower limit below which no observable relaxation is contributed

by the volume element within the duration of the experiment'

and 82 as 'the upper limit above which an element is

completely relaxed before measurements can begin'. The

above mentioned N(s) is generally known as a box distribution
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function (Gross, 1953). A so-called Becker material, or

the result of a band-limited superposition of elementary

relaxations, shows a creep curve (Orowan, 1967; Kanamori

and Anderson, 1977)

= n(s 2 t) - Ei(-slt) + Y (3.3)

where

-uU

is the 'exponential integral', and the constanty( = 0.5772) is

the limit valoe of Ei(-x) - in x for x-0. At t = 0 the+

exponential integral dominates. However, after a small time

(when s2t exceeds 3), the creep becomes logarithmic. The

logarithmic creep leads to an approximately constant Q (Loumnitz,

1957). Most observations of logarithmic creep have been for

metals and long-chain polymers (viscoelastic material) at low

temperature. However, the effect of pressure is opposite that

of temperature so that the discrepancy between laboratory

temperatures and temperatures in the mantle may not be as

serious as we usually consider.

3.6b Log-no-mal distribution

The 'box distribution' which is constant and finite over

a limited rrnge of lnTand zero elsewhere has been discussed

Ar,
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in the previous section. A different relaxation spectrum, a

log-normal distribution, has been studied at length (Norwick

and Berry, 1961) to explain broad regions of nearly cbnstant

Q in metals. A log-normal distribution of relaxation times is

a Gaussian distribution in the logarithm of the relaxation

times, in which the absorption can be specified by three

parameters. These are the mean relaxation time. rm , the width

of the distribution, Wand the magnitude of relaxation,/N.

For the 'box distribution', the clear advantage is its

possible evaluation of integral (3.2) in terms of known

functions; nevertheless, it has the distinctive disadvantage

that it is a physically arbitrary distributior, and for the

limits sI and s2 to fall just outside the seismic frequency

band is unreasonably convenient. The Gaussian distribution

more likely represents the physical situation in which a

distribution of relaxation times arises due to the distribution

of atomic environments about a mean value. The relaxation

process controlled by atomic movement is strongly temperature

dependent (Jackson and Anderson, 1970):

= o e H/RT (3.4)

where H is an activation energy, To and R are constants, and

T is temperature. In equation (3.4), if the value of H is

distributed with a distribution parameter according to
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Gaussian distribution, then the value of lnTis also

distributed with parameter in a Gaussian manner,

0
= c° /RT

If we assume that is independent of temperature, then

varies inversely as T. That means, if temperature is low,

the absorption spectrum becomes broader and goes to the

'box distribution' in the limit. On the other hand, as

temperature goes higher, the absorption peak becomes sharper

and shows frequency dependence. The apparent disadvantage

of the log-normal distribution is that the integral (3.2)

cannot be evaluated in terms of explicit functions.

3.7 Q frequency dependent or independent?

The frequency dependence in Q in the earth's mantle from

most seismic evidence is ambiguous at best. Solomon (1971)

reviewed elzborately the contradicting evidence. One of the

main sources of ambiguity is the large uncertainties in

seismic measurements. The main obstacles in seismic amplitude

measurements are geometrical effects, such as scattering,

multipathing and mode conversion. Jackson (1971) assumed a

frequency dependent model based on the mechanism of grain

boundary relaxation and showed a reasonable fit to the

intermediate range of Love wave and toroidal oscillation

data (40-200 sec). However, Jackson's model (57-31-010)

seems not tc have good agreement with longer period data
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(>200s). Jackson (1971) indicated that the assumption of

frequency independent Q resulted in negative values of the

Q model in some depth. Solomon (1971, 1972a) suggested a

relaxation model due to partial melting in the upper mantle

uf western United States. Solomon's (1971, 1972a) frequency

dependent model showed a good agreement with Love and Rayleigh

wave attenuation data in the period range 15 to 82 seconds.

However, the same data set is still in good agreement with

frequency independent models (Solomon, 1971; Lee and Solomon,

1975). Archambeau et al. (1969) doncluded that Q (P-wave
a

attenuation) in the upper mantle of western United States

increases with increasing frequency over the period range

0.75 to 1.5 Hz based on their observations of the attenuation

of Pn waves. However, a frequency independent Q has been

usually assumed. Recent observations of body wave attenuation

(Solomon, 1972b; Der and McElfresh, 1977 suggest that 0

increases with increasing frequency above I Hz. Russian

investigators, Fedotov and Boldyrev (1969), Khalturin and

Rautian (personal communication with Aki) expressed the same
opinion.

From an observational standpoint, it is fair to say that no

conclusion can be made one way or the other for periods longer

than 1 sec and there seems to be growing evidence of Q

increasing with frequency for shorter periods (< 1 sec). From

the theoretical point of view, individual relaxation

mechanisms may be thermally activated processes and are
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strongly frequency dependent. However, a certain distri-

bution function of these relaxation mechanisms could show

a frequency independent spectrum of Q over a limited

frequency band (Drowan, 1967; Liu et al., 1976). If

extensive melting is possible in the earth's mantle, Q will

become more frequency dependent because of the charactersitic

of liquid state for Q to increase with w (Knopoff, 1964).

Such an explanation may have something to do with the

frequency dependent observations (or related interpretations)

in western U.S. (Archambeau et al., 1969; Solomon, 1972a)

and the Atlantic Ocean (Tsai and Aki, 1969).

For partial melting, Walsh (1968, 1969) considered the

earth's mantle as a two-phase medium. If we think of a

two phase medium in terms of a matrix embedded with viscous

inclusions, relaxation due to either viscosity of tl.e

inclusions or viscous fluid flow through connected cavities

may be responsible for damping. For distributed cavity sizes

and shapes such, inclusions will lead to a distributed

absorption spectrum. We could not say anything more until

either we measure accurately attenuation of long period body

waves or we improve our knowledge on the attenuation mechanism

in the earth's mantle. Therefore, the box distribution of

relaxation mechanisms, which may possibly occur in the earth's

mantle and whi:h leads to a logarithmic creep function, often

observed in tha laboratory, may be a reasonable first guess.
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on the other hand, the gap between the laboratory and

the earth's mantle may be less serious than we usually

assume, since temperature and pressure effects may work

against each other. Finally, with the recent iiore widespread

appreciation of the importance of anelastic difspersion, the

more accurate phase information as well as inaccurate

amplitude information can be a strong constraint to discriminate

among some of the assumptions about frequency dependence of 0.
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CHAPTER IV

Anelastic Dispersio.n

4.1 Resume

In the previous chapter, we discussed attenuation

mechanisms and distribution functions to explain the gap

between individual mechanisms and observations. In this

chapter, we are going to take an alternative approach, in

which we postulate basic principles like superposition

and causality, and write the consequent mathematical

relations between physical parameters. Ultimately we want

to use these relations for inversion problems in the

following chapter. Kolsky (1956), Futterman (1962), Lamb

(1962), Strick '1967) and Azimi et al. (1968) used this

approach in one way or another. The principles of super-

position and causality provide relationships between the

real component and imaginary component of the complex

elastic modulxis (phase velocity v and attenuation ooefficientX)

given the observed frequency dependence of Q. Some other

dispersion-atteauation relations also can be provided from a

finite or infinite superposition of relaxation mechanisms

using a certair distribution function. Solomon (1972a) and

Liu et al. (1976) showed examples of these. Others arise

from the empirical equations like Lomnitz's Law (1957) and

the Jeffreys-Lomnitz law (1958). All of these relations,

however, are indistinguishable mathematically for a given
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frequency dependence of Q. Therefore, they are classified

in two general categories, frequency independent Q and

frequency dependent 0.

4.2 Superposition and causality

We have discussed the validity of the linear theory of

seismic wave propagation in anelastic media in the previous

chapter. Linear theory provides Fourier analysis and the

superposition principle. Therefore, the attenuation problem

of non-sinusoidal waveforms is mathematically manageable. A

wave form may be decomposed into its Fourier components, each

component as a sinusoidal wavelet being attenuated and

recomposed into the damped form of the complex wave. The

causality principle, 'no signal before stimulus', is a must-

be-obeyed condition in any physical system. Hovever, causality

often seems to be violated when we approximate a :heory or an

equation for numerical calculation, or when we try to fit a

small piece of spectral data. The violation of causality

sometimec causes disastrous consequences. In seismology, we

have an example of causality violation. We used to make three

simultaneous but incompatible assumptions based on limited

pieces of observations. We used to assume: 1) frequency

independent Q, which is approximately indicated by observation,

2) non-dispersiveness, which is indicated by bocy wave

observations (surface wave observation is complicated by its

own dispersi.on due to penetration depth), and 3) linearity.
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Therefore, among the three, one or more is necessarily wrong.

The causality violation due to these three assumptions can be

easily demonstrated in the following example of a delta

function pulse 6 (t-x/c). The Fourier transform of the pulse

6 (t-x/c) is

F ( W 6(t -T) e iL*t dt = e iW 2T (4.l1)

Allowing the pulse to travel for a time T in the medium of

constant Q, we obtain the attenuated spectrum

C Lt iWT WT

FT( CO ) .= 6 (t-T) e iCOte- dt e 22)

Transforming back to the time domain,

Z0

fT (t) F ( -i CO t = 2 T/20 1 43
T ) F(LO~e dLO 2 )2J 43

OD (T/2Q) + (T-t)

The result of equation (4.3) shows that the pulse peaks at

t=T and spreads symmetrically to both earlier and later times.

The fundamental unacceptable feature is that the disturbance

begins before .=T.
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A moderate frequency dependence of Q may be introduced

with an associated dispersion to cancel the Fourier 
component

which travels faster than its signal velocity. Assuming

certain types of frequency dependence of 0, the corresponding

dispersion relations are given by Kramers-Kr8nig rlations

(Hilbert transforms). A detailed discussion on causality and

Kramers-Krbnig relations is given in Appendix I.

4.3 Anelastic dispersion

SIn a linear theory of .'tenuation, dissipation must

accol\)any dispersion. Suct dispersion due to anelasticity is

wn\'Ls 'anelastic disperi. on'. This notion is the by-

pro,1, of principles of r ierposition and causality.

Futtez.'% (1962) derived a Iispersion relation from the

Kramers-KL,%.-q causalit. ilLations. An important consequence

of anelastic dX., ersion that it is of first order in Q

and the dispersi ,\ betwe two decades of frequency in the

earth's mantle is c\lt which is nearly an order of

magnitud, larger than h , :ainties in the data. We will

discuss the significance ( this statement. Although the

effect of anelastic dis3e ( on has been discussed by a number

of authors for nearly t%) z.£:aes, the significance of this

effect has been either n L'CtE , or widely thought to be

minimal in the seismologi jl cutimunity until quite recently.

For the point of historicI interest, we will discuss the

reason for the neglect of %:elastic dispersion.
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4.3a Importance of anelastic dispersion in seismic studies

Ever since long period surface wave velocities and free

oscillation periods were first interpreted to derive earth

structure, the zesult has not been compatible with the classical

models of Jeffreys and Gutenberg derived from body waves. The

so-called 'baseline discrepancy' is the travel time difference

of P and S waves from such a velocity model for long period

data with refe'ence to Jeffreys-Bullen travel times, for example.

This baseline Ciscrepancy is known to be more pronounced for S

wave than P waves. According to Sen-Gupta (1975), his observed

travel times of body waves from deep focus earthquakes, compared

with the travel times computed from the B1 model of Jordan and

Anderson (1974), an inversion model based on 80 percent free

oscillation data and 20 percent body wave data, are 0.3 seconds

early for P, 6.4 seconds early for S, and 5.7 seconds early for

ScS. Sipkin and Jordan (1975) suggested there may be a

continental bias in observed travel time of S waves while free

oscillation data represent the average earth mantle. However,

by any explanat.on, the S wave travel time difference of 6.4

seconds is too big. Carpenter and Davies (1966) and Davies

(1967) pointed out the importance of dispersion in surface wave

inversion and discussed the compatibility of body wave and

surface wave observations. Hart et al. (1976), Anderson et al.

(1977), and Karamori and Aiderson (1977) discussed the anelastic

effect in the inversion of surface waves and free oscillation

data. The sijnificance of the anelastic dispersion effect is

that the baseline discrepancy can be removed. Non-dispersive

24
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earth models from surface-wave and free oscillation predict

the phase velocities around 50 second period with about 1

percent error (Carpenter and Davies, 1966; Liu et al., 1976).

4.3b Reasons for neglect of anelastic dispersion

As explained in the previous section (4.2) and also by

Stacey et al. (1975), it has been a mistake to use three

incompatible assumptions which lead to causality violation,

namely, linearity., constant Q, and non-dispersiveness of the

medium. Knopoff (1956, 1959). discussed a linearized equation of

motion of the form,

C + 1 a } = a__
0 IWIQ at ax 2  3-t2

where u is the particle displacerient and c0 is the wave velocity

in the absence of attenuation (Q-4). Here we can see the same

mistake of constant elastic modulus being assumed (non-

dispersiveness). Because of a similar error, Ricker (1953)

and Knopoff (1956) reported that the waveforms propagating

through media with solid friction are not changed but spread

out symmetrically.

Other reasons for the historical neglect of anelastic

dispersion are given by Kanamori and Anderson (1977). (1) For

a simple damped linear oscillator the inclusion of an infini-

tesimal attenuation E changes the natural frequency of the

system fror. O to ((1-CE 2), where C is a constant. Since

4 , the effect can be ignored for Q greater than 100, a

typical value in the earth's mantle. 2) Knopoff and MacDonald
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(1958) showed that the inclusion of infinitesimal attenuation in

a linear system results in Q which is proportional to odd

powers of frequency; therefore a constant Q model is

inconsistent witn a linear system. This led Knopoff and

MacDonald to introduce a non-linear model. 3) Futterman's

(1962) dispers.on theory has been challenged by some investi-

gators (Stacey et al., 1975) because the propagation velocity

is increased by inclusion of anelasticicy. (Futterman's theory

has been defended by Savage (1976) and Kanamori and Anderson

(1977) in that Futterman's mistake is not a real physical

implausibility but rather is a result of the arbitrary

assumption that phase velocity at zero frequency is the

elastic velocity). These arguments can be given for

historical intexest. Some confusions due to arguments between

linear or non-'.inear theory, and between frequency dependent or

independent 0 ,siould not prevent us from seeing the significance

of anelastic dispersion.

4.4 Dispersion-attenuation relations

Dispersion-attenuation relations can be given in two

different ways. (1) In the frequency domain, for a given

frequency dependence of Q, Kramers-Kr8nig relations provide

a dispersion-attenuation relation. A frequency dependence

(either dependent or independent) of Q can be given by

superposition of a certain individual relaxation mechanism

or of viscoelaatic elements, or by empirical observations.

No
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(2) In the time domain, Boltzmann's after-effect equation will

provide a complex modulus and a dispersion relation for a

given creep function or relaxation function. A creep (or

relaxation) function can be given in a similar way, by

superposing the relaxation (or creep) function o each

viscoelastic element using a distribution function or by

empirical observations. No matter which procedure we go

through, the same dispersion-attenuation relations are given

for the same frequency dependence of Q. Therefore, we will

discuss two categories of frequency dependent and independent Q.

4.4a Frequency independent Q

Various attempts have been made to explain the nearly

constant Q in the seismic frequency band (Futterman, 1962;

Lomnitz, 1957; Azimi et al., 1968; Liu et al., 1976).

Futterman (1962) and Azimi et al. (1968) derived dispersion

relations in the frequency domain.

X = C (Futterman)

(4.4)

X U) = (Azimi et al.)
I +X X ,

whereXC(W) is attenuation coefficient and C,b, Xl

are constants. Relations (4.4) give the following dispersion

relations (Appendix II)
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v( w ) v 1 Qo (Futterman)

V( W Vf + 2 2 in (Azimi et al.)(I- X 1 Wo X WIw

(4.5)

where Xis chosen so that X(&)is almost linear in some finite

frequency range 0 CJ !g CL,,m (Azimi et al. used the value of

constantXI as -10 - 7 sec).

For attenuation

W ) = (Futterman)

- 0 (AzimL et al.)
1+ XJl w

SinceX, is very small (10 -7), the two above expressions are

vertually identical.

Lomnitz (1957) and Liu et al. (1976) instead derived

dispersion relations in the time domain. The creep function was

given as follows

q in (1 + at) (Lomnitz)
*(t) = (4.6)

C (1 - e t/T (Liu et al.)
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where q, a, C, are constants and 1 is a relaxation time

constant. These creep functions will give the following

dispersion relations (Appendix III)

V.{l + + i [ y + In I ]Lomnitz)
r0a

V()= (4.7)

( oin _ (Liu et al.)

where , a, 2  are constants, v. is the velocity at infinite

frequency, and Q is approximately constant at the value Q0 o-1

From (4.5) and (4.7), when 00 is small,

1 I-in 1 4.8)
v( w )/v( w2 ) = + Q---- W

This is a good approximation for various attenuation laws of

constant Q.

4.4b Frequency dependent Q

Jeffreys (1958) modified Lomnitz's law (1957) to the

Jeffreys-Lomnitz law which also represents an empirical law

(Andrade, 1911). The creep function for the Jeffreys-Lomnitz

law is

*(t = (1 + at)V- 1 ](4.9)

7'Ir V
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where q and a are constants and v is a number between 0 and 1.

As /goes to zero, (4.9) tends toward the original Lomnitz law.

In the time domain, this creep function (4.9) gives the following

dispersion relations (Appendix III)

w-l q a (V W -v sin 7v

(4.10)

v( ) = v•c +2

(Jeffreys et al., 1960; Jeffreys, 1965, 1975). For v,a number

of suggestions 'lave been made by Jeffreys ( 1 , ) and Andrade
4,5

~ ). Lamb (19C2), Strick (1967) and Azimi et al. (1968)

considered the following frequency dependence of the attenuation

coefficient X(w) ,

X(W) = X 1-v (4.11)
0

where Vis a number between 0 to 1.,

The frequancy domain approach (Appendix II)will give the

following dispersion relations,

Q-I(w ) = C
-r (4.12)

W C- WV V

._ ) -V tan JTJv( W ) v00 + XoV2
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1
Lamb (1962) used V and Strick (1967) and Azimi et al.

(1968) rather try to explain nearly constant Q with

V= 0.078 (Strick) and V= 0.1 (Azimi et al.).

Equations (4.10) and (4.12) give

Q ( CO1 )/Q- ( W 2 ) C (-01/ ' 2 )-v }

-Ll1- (4.13)

=([ 1 +)?[ cot 1-)
-1 -

V( W 2 )  22 2/

where QoI is Q-I at W :J 2 .

Solomon (1972a)considered a frequency dependent Q model

for western United States with the assumption of partial

melting. Solomon (1972a)used a couple of relaxation times

for the asthenosphere. For such a superposition of a finite

number of relaxations, dispersion relations car. be written as

(Solomon, 1972a)

_- _________--_____ W Ii 1
i (i)- ALi ) 1/2 1 + ( T'7i )

v( ) = 1+- +/( i)2] 2 (4.14)

where /k and T are the r_rength and the characteristic time

of the i-th relaxation.
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CHAPTER V

Formulation of Simultaneous Inversion of

Surface Wave Phase Velocity and Attenuation

5.1 Resume

In this chapter, we describe a formalism for simultaneous

inversion of sirface wave phase velocity and attenuation.

The forward problem of surface waves in an anelastic medium

and the subsequent inverse procedure are developed. Basically,

a complex formilation is developed first and treated

component-wise for computational purposes. Resolution

analysis is eAtended to the complex case using Der and

Landisman's (1972) two-variable concept. A comparison

between the simultaneous formulation and Anderson and Hart's

(1976) treatment is included.

5.2 Forward problem

The problem of surface wave propagation through perfectly

elastic multilayered media can be treated by Haskell's matrix

formulation. In each layer, with boundary conditions of the

free surface and of continuity of stress and displacement at

the interfaces, a set of equations hold:

2 2

X+ 2 V t j P j t 2

2 2

t jt 2
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a 2v.V2 v p 5.... tS.lb)
J t j j at 2

where 2= 2

uj = @ , w = zz a x

where x (propagation direction) and z are the horizontal and

vertical axes, respectively, j4j and Pi are Lame parameters

and density in the j-th layer, P., 4j are scalar and vector

potentials of the elastic field of the jth layer, and uj, vj,

wj are the displacements in the x-, y-, and z-directions. For

an anelastic (or viscoelastic) medium, the wave equation (5.1)

and the solution have the same form in the frequency domain as

for an elastic medium except that the elastic modulus is

replaced with a complex quantity according to the 'correspondence

principle' (Christensen, 1971). The Fourier transform of

equation (5.1) with complex modulus is

•V 2 = P W2 (xW ) (5.2)

YE (x) Z VWF~zt t  ,t

27r

where E*j(w) represents either $ 2/ jor iij and Fj

)
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represents cPA5or v . E () depends on frequency in general.

The frequency dependence can be specifically defined by the

creep functio'i (or relaxation function) of the medium. As an

example, the sclution of Fj = vj (for Love waves) of equation

(5.2) with the boundary conditions mentioned above is

v.(x,z,OW) = F.(x,z,W0) = 2 iT A e - b z e ikx 6( w - wJ )

where A is a constant, S is a Dirac delta function, and where

k W/c

b = k / 1 - c 2/8 2

2
= /p

and the phase velocity c is found from the solution to

equation (5.1). The inverse transform of vj is

Ae-bz ik (x-ct)

v. (x,zt) = A e e o

where ko = Wo/ c
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2
b = k /1 -(c/ 2

0 0 00

Co = (c 1  ic2 o

8 o  = ( 81+i2 W 0

Therefore, Haskell's (1953) matrix formulation maj be

extended to lossy media by implementing complex velocities

and a dispersion relation between the real and imaginary

parts of the intrinsic velocity. Similarly, for Rayleigh

waves, the above extension of Haskell's matrix formulation

can be achieved.

5.3 Inverse problem

The phase velocity and attenuation of surface waves on

a multilayered, anelastic earth are obtained from the roots of

the complex dispersion-attenuation functions (Schwab and

Knopoff, 1971) fL (Love) and fR (Rayleigh):

f ( Tit cL jg, P j, dj ) = 0
L i1 rj '

(5.3)
R i, 11j 1 ja

1 , c, , j , ) 0

~i " I, 2, ... , m; j = 1, 2, ... . n

___________/
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where Ti , ci, and ci are ith period and Love and Rayleigh

wave phase velocities andCL cLf j and dj are, respectively,

the P-and S-wave velocities, density and thickness for the

_th layer. The velocities cLC ,cLand f are complex quantities.

The inverse problem can be stated as the problem of

finding an anelastic (complex) earth model from given

observational data pairs, phase velocities and phase

attenuations. We start with an initial anelastic earth model

and a set of observed dispersion-attenuation data pairs. The

phase velocity and attenuation for the initial complex model

are then calculated theoretically by Haskell's (1953) method

at the period of each observed data pair. The generalized

Haskell formulation is for a flat earth, whereas the

observations are for a spherical earth. The flat-to-spherical

transformation of Biswas and Knopoff (1970), as amended by

Schwab and Knopoff (1971) to include anelasticity, is used for

sphericity corrections for Love waves. For Rayleigh waves, a

similar transform is given in Schwab and Knopoff (1971).

AHowever, it is difficult to use in a computer code. In this

study, Bolt and Dorman's (1961) empirical correction has been

used for speri,.ity and gravity corrections. Although North

and Dziewonski (1976) improved such a correction, a minimal

change is expected at periods less than 100 sec.
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From the dispersion-attenuation calculations we can also

obtain the partial derivatives of complex phase velocity c

with respect to each complex parameter p of the layered earth

model. Then the linear perturbation equation can be written

relating the desired parameter corrections to tie differences

between the corresponding theoretical and observed phase

velocity values:

aleL, R
p-R ,- R (5.4)

apj

where the repeated indices imply summation for n layers. A

similar equation for each period can be formed.

Because the physical significance of a complex quantity

is more easily understood by decomposition into real and

imaginary parts, we write equation (5.4) as two real equations,

rather than one complex equation.

P c,R ac L 'R a L,R
aPl al'2

aCLR acLR (5.5)Z L,R 2 cL2 AcR /P2

2 a Pl P 2

where cL.'8nd cL're the real and imaginary parts of ,R and p,

and P2 are the real and imaginary parts of p.

It is assumed that all the dissipation is due to

imperfect elasticity. By requiring the density to be real

we ignore the possibility of losses due to imperfect inertia
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(Anderson and Archambeau, 1964). For Love waves we can write

equation (5.5) in more familiar terms:

I cL a c L
L 2 (5.6)

c L 22 A2c2 a 81 B S 2 2j

where i and 6, are the real and imaginary parts of the shear

wave velocity in± the jth layer. For Rayleigh waves, eq.(5.5)

can be written as,

c I R c I  c I R c] R c R

1 R 1 2 2 2 ,

ci (5.7)
1

R R
_1 _ 2 ac 2  aP 2cRcR 3C c R acR R acR

2C 2 2  2 '2 2a2
ij

Since one or both ofAfl8 andA 9 2 depend upon frequency (as do

AL 1 and AL 2 for Rayleigh waves), the right hand sides of eq.

(5.6) and (5.7) should be standardized at a single reference

frequency for inversion (see below). Generalizing equation

(5.4) to m complex observations and using matrix notation gives:

A L,R-xLR = L,R (5.8)



214.

where y is an m x 1 matrix of differences between observed and

predicted phase velocities and attenuations, A is an mx n

matrix of partial deTivatives, and x is an n x 1 matrix of

perturbations to the starting anelastic earth model. The

_LLan Lelements of y, A and x are real 2 x 1, 2 x 2 and 2 x 1 matrices,

R R R
respectively and the elements of y , A and x are real 2 x 1,

2 x 5 and 5 x 1 matrices, respectively.

The partial derivatives of phase velocity with respect to

shear velocity are obtained by implicit functioi theory

(Schwab and Knopoff, 1972):

aCL 'R = a f L,R / f L,R
~LR - - ,R38 8 3 cL ' R

(5.9)

2c R  a fR a f R
-- /

where fL = (s, -i)an lan 2 ... a1  (3)

= T()F(1)F( 2 ) V (n-2 )F(n-l)T(n) even nF -(n-2) (n-l)-(n) odd n

are the dispersion-attenuation functions for Love and Rayleigh

waves and where

• -1 -1
cos /j ,i j r 8 . sin Qj, j=l,2, ..,n-1

. = C

ir sin Q. cos Q.
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S= - n,1- 2/ 2

2 2

4n n

T (o) = _1.~ ) , 0, 1) 2 ,  2, q/c 2pl Pi ( cii)

T(n) 0 (n) 0
- r n n  r n

r r
n an

n  n

0

F ( 9 )  F(J) F (J )  F (J) F (J) F (J) F(9)
1212 1213 1214 1223 1224 1234

F1312 F1313 F1314 F1323 F1324 F1334

F1412 F 1 4 1 3 F1414 F1423 F1424 F1434

,'2312 F 2 3 1 3 F2 3 1 4 F 2 3 2 3 F2 3 2 4 F2 3 3 4

F2 4 1 2 F2413 F2414 F2423 F2424 F2434

F3 4 1 2 F 3 4 1 3 F 3 4 1 4 F 3 4 2 3 F 3 4 2 4 F3434

T )F(J) -F( j )  F (J) F(J) (Fj )  (J)

( F3434 3424 F3423 F3414 F3413 F3412

-F2434 F2424 -F2423 -F2414 F2413 -F2412

F2334 F2324 F2323 F2314 -F2313 F2312

F -F F F -F F1434 1424 1423 1414 1413 1412

-F1334 F1324 F1323 -F1314 F1313 -F 1 3 1 2

F1234 -F1224 F1 2 2 3 F 1 2 1 4 -F 1 2 1 3 F1212
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where

r = L,R 2 - 1 if Re cL,R > Re

i/c - (c-L1R 2 if Re cL ' R < Re 8

rj /( c R/ a  )2 1 if Re cR > Re a.

c-i 1- ( c/ aj )2 if Re c R  < Re aj

Q. = r83 dj/ cL 'R

P. = wr j dj/ cR

Pj r. )

q =0 for continental paths

2

poc tan [Po/r o for oceanic paths

(_l)n-I 2 2/ 2 2= (-1 i c / n r r Pn %
a n n n

2 ( . c 2
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and where the square root operation is performed so as to

make Re r j>0, Re r >o for all j. The partial derivatives

required to evaluate equation (5.9) are given for Love waves, by

= [-L, 01.an lan_2  a1  )

3cn1 0

Da.+[s,-i] £ an~lan_2 .. *c . a1  I)

nln2 ac (0,. . a1

-~ - [s, -i] an~lan_2 ... a. a

a- 1-2, 0] anian_2 .. a )n n 0

For Rayleigh waves,

define

-(n-l) = (I)F(2)y(3)... F(n-2)F(n-l)

A (n-1) = (I)F(2)j(3)... 1(n-2) (n-l)

then'

f = T (0) W (n-l)T(n) fc'r even n

T(0 ) A(n-l) T(n) for odd n
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For even n,

__, _ - -R (n,, T + T °o). _ , r A "" "I (5.o )

where

-) P) -210T

a£ T(") F(') F(2-)_ __T t-)  )_.
aP a P "

where p can b'3 either (OI or f

For odd n, similar formulae hold. From equation (5.11), only

two of the elements of the 2 x 2 real matrix in equation (5.6)

are independent for Love waves and only six of the elements of

the 2 x 5 real matrix in equation (5.7) are independent for

Rayleigh waves. Thus the matrices can be completely specified

from the real and imaginary parts of and JCK/
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Since cL= cL) and cR= cR(a, 8) are analytic, single-
valued functions their first derivative are unique and

independent of the direction along which the derivative is

taken), the Cauchy-Riemann condition is satisfiei for
LI R .L,R

C' CIL C1  + I Ca , '0 = 91t- LAI (J.O..CLct

(Morse and Feshbach, 1953, p. 357), and

aL, CL, , aL - alCtl

5.4 Resolution

To assess a criterion for stability of the inversion

process, we should examine the averaging kernel or resolving

length at various depths. In Lee and Solomon (1975), we

determined the resolving length for surface wave attenuation

data with errors using the idea of Der et al. (1970) of

minimizing simultaneously both the variance of a physical

parameter of interest in a layer and the deviation from a

8-function of the averaging kernel for th, Eame layer. Der

et al. and others have shown that the resol~t.ion of layer

parameters can be improved by combining two incdtpendent

observations, such as Love and Rayleigh wave dispersion or

)

I
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fundamental mode and first higher mode Love waves. Der and

Landisman (1972) extended their theory to the case of two

variables, namely shear velocity and density in the crust and

mantle. In the extended theory, separation of the two

unknown variables, depth resolution, and accuracy of the

parameter estimates are three competing objectives. A similar

theoretical discussion was given by Backus (1970) in an abstract

form. Dziewonski (1970) noted that the strong correlation

between the pa:'tial derivatives of free oscillation periods

with respect to density and shear velocity makes the inversion

process highly non-unique. Derr (1969) showed that the addition

of free oscillation overtones of low radial order to the set

of fundamental mode observations does not greatly improve the

depth resolution of shear velocity but facilitates the

separation of shear velocity from density. Similar conclusions

were also given by Der and Landisman (1972).

The simultaneous inversion of phase velocity and

attenuation, however, differs in two important respects from

the above cases:

1) The relative errors associated with phase velocity

and attenuation data are generally very different, much largqr

for Q observations than for phase velocity measurements.

2) The two variables and 0 -1 are expected to be well

separated by the Der and Landisman (1972) treatment because
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the real and imaginary parts of the data are more closely

related to the two unknown variables (real and imaginary

parts, respectively, of an earth model) than is the case for

the two-variable problems mentioned above.

We follow the treatment of Der and Landisman (1972) for

parameter resolution for a two-parameter earth toel. The linear

combination of data yL'sed as the estimator of a desiredcombinatiyn of\dsird

L Rin layer k isparameter xk

xLR = = N M , (5.12)x r ikYi E E r Aikij x5.2

i j

where rik is a coefficient to be determined, N is the number

of data, M is the number of layers in the model. and where S..
zL,R 13yi

, normalized by the layer thickness in km.ax L, R

-JThe three quantities to be minimized are (Der and Landisman,

1972)
L,R

1) the variance of the desired variable 
xk

2) S 1, the resolution for xkL,R L,R

3) S2 , the dependence on the undesired variable xk for

the same layer.

If we assume that the observational errors are independent

L,R N 2 L,R
var xk = ri Avar Yi (5.13)

MI 2E L ,R
1 2 j! ' dj ( kj

sL,R 2 M L,R )2S E d.(

j kj
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where d. is the layer thickness and

ELR N N,Ekj 'i r1 ijL,

L RN ayLR (.5
,L' 1 r TL,R T~R =
kj ik i 1

These three objectives can be accomplished by minimizing the

function

CL,R = i vrxL,R + o~inL,R )2 + oconsL,R )2
skn va k +cssn( 1  )+oscss 2

+ 2 O(EL,R -1) (5.16)
kk

where 6is a Lagrange multiplier. The parameters and 77

(O(. #77<JiZare adjusted so as to balance the three desired

minimizations. As is increased, the approximation to the

delta flunction becomes worse, the variances of x k LR become

smaller and separation between xk L, nd- L,R. mrvs

5.5 Inversior. Procedure

For the d-.spersion-attenuation relations discussed in

section 4.4,0 Q ,CL and CL are related to

f2, CL and CL2 such that

Q 2 B82/1

(5.17a)

Q- 1 2
= c 2 / '1
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= 2 2

= (c~+c1) /C(5 
7b)

For each of these relations, . CLI or a , 2 nd

depend on frequency

lj (wi ) = lj + g(i)x2j

0 2j (wi) = 2j h(w i )

(5.18)

alj(wi ) = lj + g(wi 2 j

21 (wi) 2 j h(i)

2 . . i -
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where g and h are specified functions of frequency and

,lj91 j Llj a nd EL 2, are values of lj,92jCjan d  C2j

at a reference frequency respectively. In general, the

inverse problehm to equation (5.8) is conducted at the

reference frequency, the partials in (5.4) are with respect to

18, 'g 2  (1"1 and CL 2 , and the earth structure at any other

frequency follows from (5.18) (see Appendix Iv).
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CHAPTER VI

Applications

We now apply the formalism for the forward and inverse

dispersion-attenuation problem that we discussed in the

previous chapters to (1) Love waves in western North America,

(2) Love and Rayleigh waves in western North America, (3)

Love and Rayleigh waves in east-central North America, (4)

Rayleigh waves in the central Pacific. We tried to test

various dispersion-attenuation relations in each region.

In western North America (1), the dispersion-attenuation

relations for Q independent of frequency 0/=O',, Q varying as

powers of 1/2, 1/3 and 1/5 of frequency (v= 1/2, 1/3, 1/5,

where V is the power of Q-1 of frequency dependence) and Q

for a superposition of shear relaxations were assumed in

various inversion trials. In western North Knerica (2), the

dispersion-attenuation relations for V = 0, 1/2 and 1/5

were tested. In east-central North America (3), 1 = 0, 1/2

were tested. In the central Pacific (4), V = 0 was applied

in the inversion process.

6.1 Data

a. North America

The data sets for L,R of North America are described

and tabulated in Lee and Solomon (1975) and in Chapter II;

the accorranying phase velocity measurements are given in

Solomon (1971).
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Since this data set, derived from records of events

in the years .964-1968, includes no Rayleigh wave data in

western North hmerica at periods longer than 40 seconds,

we made an eff>rt to search for events in the years 1969-

1975 for which energy at periods longer than 40 seconds

was visible on the vertical component. A requirement of

the search is that events must be nearly on the great

circle connecting the two stations LON and TUC. 'Nearly'

great circle path is taken to include a flexibility of 100

in azimuth from precise great circles.

We picked and digitized five events (Table 6.1) whose

magnitudes ranged between 5.8 and 6.5 and which are located

in China, Alaska and Indochina at distances between 40 and

130 degrees from the stations. After we went through the

standard procedure, described in Solomon (1971), we realized

that we could not obtain any new information, because of

several reasons: (1) Suitably long period (Rayleigh waves)

are poorly generated unless an earthquake has a magnitude of

near 6 or greater. (2) The path from an event to the stations

should not cross geologically complex regions. (3) If the

event is too large in magnitude or too close to one or both

stations, the records are usually complicated or unreadable.

(4) In our case, the great circles connecting each of the five

events to the stations LON and TUC pass through a part of

the Asian continent and Alaska, where the geology is not

simple. Further, three of the five events are too far



228.

I4.-I coa
@14 .09
@20 0. r

M0 0J f -N' . .~ . 4

* 0 .4 0
CD V r4 0 4

0 C4 n '0W

tn 0% en co

0 "2
r4 r4 0 14

*0.

go A V

.4 V 14 >

- 1.4 N a N .. a

N 0;

0 01 at 0

.4 0 0

N N n .4 w- -

14*~r r % ' 4 at4

4 L

00
. 4 0 % 0 % 0W

14 o 0 0 Sn 0 03
IH4 ' C2 .



229.

away from the stations (more than 1000 away). As a

consequence, we were not able to add to our knowledge of

long period Rayleigh wave propagation in western North

America.

b. Central Pacific Ocean
-1

The data set for QR for the central Pacific ocean

has been measured by Mitchell et al. (1976). They

determined OR- from the records of three earthquakes at

WWSSN stations distributed around the west coast of

America, the Far East and the Pacific. These measurements

represent a w3ighted average of the entire Pacific ocean

region. Such an average model does not strictly represent

the structure in any particular location because of the

lateral variation of oceanic structure according to the age

of the sea floor (Forsyth, 1975).

We particularly have chosen one event among the three

for which the data sample paths predominantly across the

relatively old (80-90 m.y. old average) central Pacific.

The locatiocu of this event (April 26, 1973, 2 0h2 6 m3 0 .8

latitude 19,9 0N, longitude 155.13*W, mb = 6.0), stations

and paths are shown in Figure 6.1. The corresponding phase

velocities, also a weighted average of 'pure path' velocities,

arc calculated using the magnetic anomaly map (Pitman et al.

1974) of the Pacific and the results of Forsyth (1975, 1977)

on the variation of phase velocity with increasing age of

the sea floor. We divided the Pacific into'eleven age
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Fig. 6.1. Pacific area map showing paths between the

April 26, 1973 earthquake and stations (ALe, ANP, ARE,

BAG, BOG, CEG, COL, COR, DAV, HKC, JCT, LPB, NIL, RAR,

RIV, SNG, TAU, TUC, WEL) used in the 0- measurements

of Mitchell et al. (1976).
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age regions (0-5 m.y., 5-10 m.y., 10-20 m.y., .0-38 m.y.,

38-53 m.y., 53-65 m.y., 65-83 m.y., 83-100 m.y., 100-135

m.y., 135-190 m.y., greater than 190 m.y.) and continental

paths. Each great circle path from event to station is

plotted on the map of age zone boundaries, from which we

can calculate the total path length in each age group for

the sum of all the paths (see Table 6.2). Then we can

determine the weighted average of phase velocity and group

velocity at each period using the results of Forsyth

(1975, 1977) and the weights shown in the Table 6.2. The

resultant weighted phase velocity and group velocity

curves for the eastern Pacific are shown in Figures 6.2

and 6.3.

The magnetic anomaly map on the basis of which

seafloor ages were estimated does not include Che marginal

basins of the western Pacific, across which pass many of

the surface wave paths used here. Additional age information

for these basins have been taken from Weissel (1977) for

the Lau Basin, from Weissel et al. (1977) for the Coral Sea

and New Hebrides Basin, from Watts and Weissel (1977) for

the south Fiji Basin and from Sclater et al. (1976) for the

Philippine Sea. Details of the adopted basin ages are

listed in Table 6.3.
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Table 6.2 Great circle paths in each age group
for the 26 April 1973 Pacific event

Path Distance (0) Percentage

0-5 m.y. ocean 19.987 1.535

5-10 '33.963 2.608

10-20 "98.864 7.593

20-38 '26.058 2.001

38-53 "205.869 15.812

53-65 "137.222 10.539

65-83 a22.999 1.766

83-100 "303.729 23.327

100-135 "179.768 13.807

135-190 150.167 11.533

GT. 190 5.859 0.45

North American* 32.569 8.273
continent

South Americ.n 9.827 0.755
continent

Total 1302.042 100

*Continentp-1 paths in southeast Asia are included in
this grou'.
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Fig. 6.2. Envelopes of Rayleigh wave phase velocity predicted

by model S21P for the central Pacific. CircLes are data

points, which are calculated as a weighted average of

'pure path' velocities (Forsyth, 1975, 1977) using the

magnetic anomaly map of Pitman et al. (1974'.
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Fig. 6.3. Rayleigh wave group velocity for the central

Pacific. Data points are calculated as a weighted

average of 'pure path' group velocities (Fo-syth,

1975, 1977) using the magnetic anomaly map o':

Pitman et al. (1974).
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Table 6.3. Ages of Marginal Basins in the racific

Area Age Range Magnetic Anomaly
m.y.

Central Basin Fault, 49-43 17
Philippine Sea1

Southwest Philippine Basin1  49-53 21
Northeast Philippine Basin 49-53 21

Lau Basin2  0-3.5 1-2

Coral Sea Basin3  60-65 24-26

New Hebrides Basin3  45-52 18-21

South Fiji Basin 4  28-35 7a

1. Sclater et al., 1976.

2. Weissel, 1977.

3. Weissel et al., 1977.

4. Watts and Weissel, 1977.
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6.2 Inversion: a. Love waves in western North America

*The starting model for calculation of partial

derivatives is shown in Figure 6.4. The model was chosen

so that the real part (?,P) satisfies the real (elastic)

inverse problem for the dispersion data in Figure 6.5 and

the imaginar-y part (Q-1) satisfies the imaginary (Q-1 only)

inverse problem for the attenuation data in Figure 6.6.

The velocity-density model shares features with models of

Alexander (1963), Anderson and Julian (1969), Kovach and

Robinson (1969) and Biswas and Knopoff (1974). The density

model in Figure 6.4 remains fixed and real in the inversion

process since phase velocity is generally more sensitive to

chanqes in 6 than in p and since inertial losses are

neglected. The starting Q- model for the constant-Q

inversion is from Lee and Solomon (1975) and from Chapter

II. The starting Q-1 models for inversion using a power

law dependence of Q on frequency are given in Table 6.4.
-1

The startirg Q model for inversion using relaxation

mechanisms after Solomon (1972a), is also shown in Table

6.4.

For purposes of calculating partials, the equivalent

flat model to that in Figure 6.4 was divided into 28

homogeneous layers and an underlying half-space.

The diagonal elements (Oc /dl = c'/a/a2) in the

partial derivative matrix in equation (5.5) are comparable
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Fig. 6.4. The initial model of density, shear wave velocity

and shear attenuation for the inversion of Love wave

data in western North America.
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Fig. 6.5. Love wave phase velocity, western North America.

Observations are shown by circles; vertical bars

represent standard deviations. The envelope (solid

lines) is that associated jith the extremal earth

model bounds from inversion S4.
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Fig. 6.6. Love wave attenuation, western North America.

Circles are observations, vertical bars represent

standard deviations. The solid lines represent the

envelope associated with extremal earth models for

inversion Sl, the dashed lines for S4.

*.
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to those determined by many workers for separate inversions

of phase velocity and 0-l; these partials are shown for

selected frequencies in Figure 6.7. The 'off-diagonal'

elements ( c,/i 2  c- c'/dfl) have a more ccmnplicated sign

structure, as shown in Figure 6.7. For Love waves with

periods beteen 25 and 80 sec, the sign of aci/dfl2 changes

at 60 to 80 km depth. Thus the phase lag due to anelasticity

above that depth would give a decreasing phase velocity for

increasing attenuation (ac/12 <0) whereas below such a

depth the phase advances with increasing Q-1 (Oc1/2M).

For shorter periods (T < 20 sec), there is an additional

zero crossinig at about 20 km depth. These sign changes are

closely related to the phase structure of the displacement-

depth function as described by Schwab and Knopoff (1971).

An important consequence of the sign structure of

aci/O2in Figure 6.7 is that quite different '2 (QT') models

can produce comparable changes in the dispersion curve

because of trade-offs between the contributions from

different depth intervals.

Resolution analysis was conducted as described in

section 5.4. The optimal averaging kernels Ekj obtained by

minimization of ek in equation (5.16) are shown in Figure 6.8a

and 6.8b for five layers. The vertical depth resolution

can be defined as the width of the peak where the value of

the approximate delta function is close to unity (ZO.8).
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Fig. 6.7a. Selected partial derivatives of the real part of

Love wave phase velocity with respect to the real part

of shear velocity ( cl//i, solid lines), and the

imaginary part (ac1/8a2, dashed lines) per unit layer

thickness for the initial model in Figure 6.4. The

partials shown are for frequency-independent Q-1 at

the frequency indicated; for frequency-dependent Q-

relations the partial derivatives have a similar

structure. Discontinuities in the partials occur at

discontinuities in the initial model.

S
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Fig. 6.7b Selected partial derivatives of the real

part of Rayleigh wave phase velocity with respect

to the imaginary part of shear velocity

( cl// 2 , solid lines), and the imaginary part

R
of compressive wave velocity ( cl/-cL2 , dashed

lines) per unit layer thickness for the initial

model in Table 6.9. The partials shown are for

frequency-independent Q-I at the frequency

indicated; for frequency-dependent Q-1 relations

the partial derivatives have a similar structure.

Discontinuities in the partials occur at

discontinuities in the initial model.
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For comparison, separate 'one variable' cases are drawn in

the same figure. The model standard deviation for the two

cases are given as (O', O- (or ao, , ,s), calculated for

a unit layer thickness, where the subscripts and Q denote

shear velocity and 0-1 and the subscripts o and s denote

separate inversion and simultaneous inversion, respectively.

Based on the resolving lengths of the averaging kernels, a

five-layer earth was adopted for the inverse problem. The

mid-depths of each layer are approximately those shown in

Figure 6.8.

The inversion scheme follows the set theoretical

approach of Lee and Solomon (1975) and of Chapter II.

Envelopes in model space of shear velocity and shear

attenuation are determined from the data set and associated

error estimates by linear prograning. The reference

frequency for all inversions is 1 Hz. The envelopes for

shear velocity 9 and attenuation Q -1 are given in Tables

6.5 to 6.8 for a dispersion model (S1) with Q independent of

frequency, for models (S2 to S4) with Q varying as a power

of the frequency, and for a model (S5) based on a super-

position of shear relaxations. The relaxation times,

relative relaxation strengths, and depth intervals for

model S5 are as in Table 6.4 and remain fixed during

inversion. (The S class of models all result from

simultanec is inversion; an E class consists of models
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TABLE 6.8 Envelopes of shear velocity and shearattenuation for simultancous inversion forSolomon [1972a]-type relaxation model,
Layer B , km/sec 100/Qf=O.Ol1z ntin max min max1 3.263 3.416 0.0 0.537

2 3.715 4.261 0.0 0.269

3 4.109 4.697 0.0 0.213
4 3.816 4.430 1.218 4.719
5 4.615 5.147 0.268 1.313

f-0.1 Hz

1 3.271 3.428 0.0 0.537
2 3.717 4.264 0.0 0.259

3 4.112 4.701 0.0 0.213

,4 3.880 4.449 0.210 0,8.6
5 4.645 5.177 1.054 5.170

f=l Hz

1 3.283 3.441 0.0 0.537
2 3.720 4.267 0.0 0.269

3 4.115 4.704 0.0 0.213
4 3.889 4.450 0.145 0.562

S 4.664 5.196 0.171 0.839

----..-
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Fig. 6.8. Resolving kernels for shear wave (a) phase

velocity and (b) attenuation at selected depths (arrows)

at the reference frequency of 1 Hz. Model standard

deviations are shown at the right for both simultaneous

(S) and separate (0) inversion results, shown as solid

and dashed lines, respectively.
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resulting from separate inversions). The corresponding

envelopes in data space are illustrated for some of these

models in Figures 6.5 and 6.6. As with all extremal

inversions of this sort, the envelopes include all

acceptable models but not every model falling within the

envelopes is acceptable.

In general, both g and Q -i (except for model Sl)

are functions of frequency. The intrinsic dispersion for

is very sensitive to the assumed frequency dependence of

QB-1 . The effect of the frequency dependence on the

envelopes for 1 and are illustrated for two models in

Figures 6.9 and 6.10.

The result of Weighted least-square inversion (Lee and

Solomon, 1975) on the same data set is shown ir. Figure 6.11.

The ? and QB-I profiles (Sll) are 'best' models in the least

squares sense for the layering shown. The initial model for

the inversion was chosen from S1 by averaging two extreme

models which have no low velocity zone. Note that the

presence of a modest low velocity zone in model S1 does

not depend on a low velocity zone in the starting model.

b. Love and Rayleigh waves in western North America

The starting models for calculation of partial

derivatives in this case are listed in Table 6.9 for Q

independent of frequency. The models for 9 and Q are

taken fro r the results of the previous section and are
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Fig. 6.9. Envelopes of shear wave velocity and attenuation,

models S1 and El. Envelopes of S1 are shown at three

differext frequencies. Long-dashed lines represent

envelopes of El, solid lines are for S1 at 0.01 Hz,

short-dashed lines for S1 at 0.1 Hz and dot-dashed

lines for S1 at 1 Hz.

l-
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Fig. 6.10. Envelopes of shear wave velocity and attenuation,

models S4 and. El. Envelopes of S4 are shown at three

different frequencies. Long-dashed lines represent

envelopes of El, solid lines are for S4 at 0.01 Hz,

short-dashed lines for S4 at 0.1 Hz and dot-dashed

lines for S4 at 1 Hz.
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Fig. 6.11. 'Best' fitting earth models from weighted

least-square inversion. Model Sll is from simultaneous

inversion, model OCl is derived from the technique of

Anderson et al. (1977). The models are shown at the

reference frequency of 1 Hz.
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Table 6.9: Starting model for inversion of combined Love

ane. Rayleigh phase velocity and attenuation in

western North America.

Depth, km ,km/sec cL , km/sec p , g/cm3  100/Q19

0-2 1.72 4.00 2.21 .32

2-13 3.58 6.00 2.80 .32

13-21 3.58 6.20 2.80 .32

21-45 3.96 6.50 3.25 .13

45-64 4.54 7.619 3.40 .13

64-84 4.54 7.615 3.40 .13

84-94 4.43 7.615 3.45 5.926

94-128 4.49 7.619 3.45 5.926

128-160 4.49 --.622 3.45 5.926

160-180 5.266 71.90 3.50 2.96

180-220 5.266 8.23 3.50 2.96

220-260 5.266 8.25 3.50 2.96

260-300 5.266 8.27 3.50 2.96

300-350 5.26C 8.43 3.50 2.96

'05.266 8.53 3.90 2.96
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determined by averaging the extreme models of g and

for each case of a given frazuency dependence of Q . The

initial density model is taken as in Figure 6.4 and is

varied (but remains real) ir. the inversion process. The

P-wave velocity is chosen t( *iave features similar to Cil

model of Archambeau et al. o'69) and is held fixed since

phase velocity is least sen;- :ive to changes in CL among

((4,p) and thus the resolut'in of the inverse problem is

poor forCL. Because of the large uncertainties in measured

c-l, we will assume that losses under purely compressive

stress are negligible, i.e. -_ = 4/3(/)2Q . Finally,

a 2 km sedimentary layer has been added to improve the fit

for Rayleigh wave phase velocity.

The 'off-diagonal' eleirents of the partial derivative

matrix for Rayleigh waves, are an order of

magnitude smaller than those- for Love waves (Figure 6.7b).

In other words, the differer-e between simultaneous inversion

and.the data corrected And r-son-Hart. treatment is less

significant for Rayleigh waves than for Love waves. However,

the advantage of simultaneous inversion still remains because

the changes in the Q- model itself are sensitive to the

result of the velocity model inversion.

Resolution analysis was conducted as before. The

optimal averaging kernels Ekj for both Love and Rayleigh

waves are shown in Figures 6.12 for five layers. During
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Fig. 6.12a. Resolving kernels for shear velocity at

selected depths (arrows) at the reference frequency

1 Hz, using both Love and Rayleigh wave data in

western North America. Model standard deviations are

shown at the right.
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Fig. 6.12b. 
Resolving 

kernels for 
shear attenuation 

at

selected depths (arrows), using both Love and Rayleigh

wave data in western North America. Model standard

deviations are shown at the right.
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inversions, the velocities and density in the top

sedimentary layer and the half space have been fixed. As

in the previous section, the reference frequency for inversion

is chosen at 1 Hz and a 5-layer model is adopted. The

envelopes of shear velocity 9, attenuation QV- I , and density

pare given in Tables 6.10 and Figure 6.13 for a dispersion

model (S31W) with Q independent of frequency, and for models

(S32W, S33W) with Q varying as a power of the frequency.

The corresponding envelopes in data space are illustrated

for these models in Figures 6.14, 6.15, 6.16 and 6.17.

c. Love and Rayleigh waves in east-central North America

The starging models of C,,fl P and Q -1 are listed in

Table 6.11. The models of CL, 1 andp are adapted from the
-l

results of McEvilly (1964) and the 1 model for the

constant-Q inversion is from Lee and Solomon (1975) or from

Chapter II. The initial model Q - 1 for inversion using a

power law dependence of Q on frequency is chosen to be an

acceptable solution to the separate Q inversion. The

averaging kernels Ekj from resolution analysis for both

Love and Rayleigh waves are shown in Figures 6.18, for

five layers. The envelopes of shear velocity

attenuation Q0l and density p are given in Tables 6.12
1

and Figure 6.19 for a dispersion model (S31E) with Q

independent of frequency and for a model (S32E) with Q

VL
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Fig. 6.13. Envelopes of shear velocity and shear attenuation,

at a frequency of 1 Hz, and density for models S31W,

S32W and S33W. Solid lines represent envelopes of

S31W ( V= o), short-dashed lines are for S32W (v= 1/5)

and long-dashed lines are for S33W (V= 1/2).

I
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Fig. 6.14. Love wave phase velocity, western North America.

Observations are shown by Circles; vertical bars

represent standard deviations. The envelope (solid

lines) is associated with the extreme earth model

bounds from inversion S31W. Open circles are incompatible

data for this inversion.
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Fig. 6.15. Rayleigh wave phase velocity, western North

America. Observations are shown by circles; vertical

bars represent standard deviations. The envelope

(solid lines) is associated with the extreme earth

model bounds from inversion S31W. Open circles are

incompatible data for this inversion.
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Fig. 6.16. Love wave attenuation, western North America.

Circles are observations; vertical bars represent

standard deviations. The solid lines represent the

envelope associated with extremal earth models for

inversion S31W. *Open circles are incompatible data

for this inversion.
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Fig. 6.17. Rayleigh wave attenuation, 
western North America.

Circles are observations; 
vertical bars represent

standard deviations. The solid lines represent 
the

envelope associated with 
extremal earth models 

for

inversion S31W. Open circles are incompatible 
data for

this inversion.
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Fig. 6.18a. Resolving kernels for shear velocity at

selected depths (arrows) at the reference frequency

I Hz, using both Love and Rayleigh wave phase velocity

and attenuation .in east-central North America. Model

standard deviations are shown at the right.
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Fig. 6.18b. Resolving kernels of shear attenuation at

selected depth (arrows) at the reference frequency 1 Hz,

using both Love and Rayleigh wave data in east-central

North America. Model standard deviations are shown at

the right.
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Fig. 6.19. Envelopes of shear velocity and shear,

attenuation at a frequency of 1 Hz, and density for

models S31E and S32E. Solid lines represent envelopes

of S31E (L/= o)," and dashed lines are for S32E V= 1/2).
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Table 6.10. Envelopes of shear velocity and shear
attenuation at 1 Hz and density; simultaneous
inversion results of Love and Rayleigh wave
phase velocity and attenuation in western
North America.

Layer Depth minimum /, km/sec maximum 1 , km/sec

no. (km) S31W S32W S33W S31W S32W S33W

2 2-21 3.527 3.529 3.533 3.492 3.621 3.637

3 21-45 3.897 3.886 3.812 4.012 4.052 4.029

4 45-84 4.382 4.259 4.293 4.583 4.549 4.690

5 84-160 4.105 4.012 -3.823 4.463 4.412 4.263

6 160-350 4.782 4.750 4.702 5.500 5.500 5.500

Layer Depth minimum 100/Q maximum 100/Q4
no. (km) S31W S32W T33W S31W S32W S33W

2 2-21 0.274 0.148 0.051 0.490 0.282 0.118

3 21-45 0.059 0.0 0.0 0.250 0.149 0.105

4 45-84 0.0 0.0 0.0 0.447 0.137 0.087

5 84-160 4.200 2.000 0.453 5.33 2.337 0.783

6 160-350 1.350 0.119 0.084 3.64 0.782 0.860

33Layer Depth minimum P, g/cm maximum P, g/cm3

no. (km) S31W S32W S33W S31W S32W S33W

2 2-21 2.807 2.846 2.850 2.900 2.90 2.90

3 21-45 3.070 3.042 3.000 3.300 3.30 3.30

4 45-84 3.200 3.200 3.200 3.434 3.50 3.50

5 84-160 3.200 3.200 3.200 3.491 3.441 3.50
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Table 6.11. Starting model for inversion of phase
velocity and attenuation in east-central
North America (case V= o)

Depth, km , km/sec CL , m/sec p, g/cmu3  loo/Qgq

0-11 3.5 6.1 2.9 0.1

11-20 3.68 6.2 2.9 0.1

20-38 3.94 6.4 2.9 0.1

38-62 4.75 8.15 3.3 0.1

62-102 4.61 8.20 3.3 0.1

102-135 4.45 8.20 3.4 0.1

135-212 4.45 8.20 3.4 2.3

212-350 4.45 8.20 3.4 2.3

00 4.80 8.70 3.6 2.3
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Table 6.12. Envelopes of shear velocity and shear
attenuation at 1 Hz, and density in east-

central North America

Layer Depth Minimum /, km/sec Maximum 9, km/sec

no. (km) S31E S32E S31E S32E

1 0-38 3.684 3.659 3.692 3.666

2 38-82 4.557 4.478 4.594 4.513

3 82-134 5.092 4.719 5.321 4.890

4 134-350 5.200 5.147 5.500 5.500

Layer Depth Minimum 100/Q Maximum 100/Q11

no. (km) S31E S32E'" S31E S32E

1 0-38 0.165 0.037 0.263 0.055

2 38-82 0.0 0.0 0.222 0.048

3 82-134 3.056 0.241 5.630 0.831

4 134-350 0.182 0.036 3.846 0.364

3 3
Layer Depth Minimum p,g/cm 3 , Maximum P,g/cm

no. (km) S31E S32E S31E S32E

1 0-38 2.896 2.895 2.900 2.900

2 38-82 3.200 3.000 3.241 3.010

3 82-134 3.200 3.200 3.327 3.220

4 134-350 3.600 3.600 3.800 3.800
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varying as a power of the frequency (v=1/2). The corresponding

envelopes in data space are illustrated for these models in

Figures 6.20, 6.21, 6.22 and 6.23.

d. Rayleigh waves in the central Pacific

The starting models of CL, ,4 and 01-1 are listed in

Table 6.13. The starting model of the crust is modified

from the 'standard crustal section' of Forsyth (1975a), in

which 5 km of water layer, 0.2 km of sedimentary layer and

6.8 km of crustal layer are assumed. For the starting model

of the mantle, the density is 3.4 - 3.5 g km3 , the S-wave

velocity /? is 4.35 km/sec in the LVZ (50-220 kin) and 4.60

km/sec in the high velocity lid. P wave velocities are

basicdlly from the assumption of a Poisson solid, 0a ,- 1.71Y

(<220 km depth) and CL 1.8f? (>220 km depth). The starting

model for QI is taken from Mitchell (1976).

No extensive test for the frequency dependence of 0 has

been performed since the QR- data are relatively poor. The

averaging kernels Ekj for Rayleigh waves are shown in

Figure 6.24 for four layers. The envelopes of shear velocity

#and shear attenuation QR 1 are given in Table 6.14 and in

Figure 6.25 for a dispersion model (S21P) with Q independent

of frequency. The corresponding envelopes in data space are

illustrated for these models in Figures 6.2 and 6.26.

Dotted lines in Figures 6.25, 6.2 and 6.26 are the averaged

best model and its predicted data, respectively.
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Fig. 6.20. Love wave phase velocity, east-central North

America. Observations are shown by circles; vertical

bars represent standard deviations. The envelope is

associated with the extreme earth model bounds from

inversion S31E. Open circles are incompatible data

for this inversion.



295.

LIC)

- : w

0<

Li w

0DVC~

:)s C 0 9 S)



296.

Fig. 6.21. Rayleigh wave phase velocity, east-central 
North

America. Observations are shown by circles; vertical

bars represent standard deviations. The envelope is

associated with the extreme earth model 
bounds from

inversion S31E. Open circles are incompatible data for

this inversion.
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Fig. 6.22. Love wave attenuation, east-central North

America. Circles are observations; vertical bars

represent standard deviations. The solid lines

represent the envelope associated with extremal earth

models for inversion S31E. Open circles are

incompatible data for this inversion.
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Fig. 6.23. Rayleigh wave attenuation, east-central North

America. Circles are observations; vertical bars

represent standard deviations. The solid lines

represent the envelope associated with extremal earth

models for inversion S31E. Open circles are

incompatible data for this inversion.
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Fig, 6.24a, Resolving kernels for shear velocity at

selected depths (arrows), using Rayleigh wave data in

the central Pacific. Model standard deviations are

shown at the right.
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Fig. 6.24b. Resolving kernels for shear attenuation at

selected depths (arrows), using Rayleigh wave data

in the central Pacific. Model standard deviations

are shown at the right.
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Fig. 6.25. Envelopes of shear velocity (at 1 Hz) and

attenuation for the central Pacific, model S21P.

Solid lines represent envelopes of S21P.
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Fig. 6,26. Rayleigh wave attenuation, central Pacific circles

are observations; vertical bars represent standard

deviations. The solid lines represent the envelope

associated with extremal earth models for inversion

S21P. Open circles are incompatible data for this

inversion.
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Table 6.13. Starting model for the central Pacific

Depth, k)a , km/sec CL , km/sec p, g/cm 3  100/Q

0-5 0.0 1.52 1.03 0.80

5-5.2 1.0 1.70 2.20 0.80

5.2-12 3.76 6.53 3.00 0.60

12-16 4.60 8.17 3.34 0.60

16-27 4.60 8.17 3.34 0.60

27-37 4.60 8.17 3.34 0.60

37-47 4.60 8.17 3.34 0.60

47-57 4.35 7.70 3.40 0.50

57-67 4.35 7.70 3.40 0.50

67-87 4.35 7.70 3.44 1.00

87-107 4.35 7.70 3.44 1.00

107-127 4.35 7.70 3.44 1.20

127-147 4.35 7.70 3.44 1.20

147-167 4.35 7.70 3.44 1.00

167-187 4.35 7.70 3.44 1.00

187-207 4.35 7.70 3.44 1.00

207-227 4.35 7.70 3.44 1.00

227-262 4.60 8.49 3.50 0.60

262-302 4.60 8.49 3.50 0.60

302-352 4.80 8.81 3.50 0.40

352-402 4.80 8.81 3.50 0.40

00 5.00 9.00 3.76 0.40
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Table 6.14. Envelopes of shear velocity and shear
attenuation at 1 Hz in the Pacific

Layer no. Depth '(km) Minimum/ Maximum/

4 12-59 4.542 4.571

5 57-107 4.195 4.350

6 107-227 4.212 4.516

7 227-402 4.50 5.00

Layer no. Depth (km) Minimum 100/Q Maximum 100/%

4 12-57 0.413 0.44

5 57-107 1.295 1.742

6 107-227 0.90 1.695

7 227-402 0.404 2.00
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6.3 Discussion: a. Love waves in western North America

An important result of the simultaneous inversion is

that the low velocity zone and the low Q zone coincide

beneath western North America, at least for the surface

wave frequency band (Figures 6.9 and 6.10). The mechanisms

that contribute to a decreased shear wave velocity must

also account for enhanced attenuation in shear.

A second immediate conclusion from these inversion

results isthat the envelopes of earth models derived by

simultaneous inversion of phase velocity and attenuation

are not identical to the envelopes of a and Q -1 models

obtained from separate inversion of velocity and Q-I data

(Figures 6.9 and 6.10); see Appendix V. While the envelopes

show a broad similarity for the two approaches, there are

significant differences, particularly within depth intervals
-i

over which Q and the accompanying intrinsic dispersion are

relatively large. At short-period body wave frequencies,

the shear wave velocities below 80 km depth for both

individual earth models and envelopes of models are

substantially higher than those determined without regard

for anelasticity.

The simultaneous inversion results in two improvements

for the attenuation problem over inversion of Q-I data alone.

One improvement is in the resolution in Q -1 versus depth.

As shown in Table 6.15 for frequency independent Q models,

.. . . ,IIa I I- l I I i"" i - ..
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the bounds on Q in the low Q zone are narrower by8

roughly a factor of 2 in Q-1 for model Sl than for model El

obtained by inversion only of Love wave attenuation data.

The second improvement is in the fit of predicted and

observed QL- 1 data, especially in the period range 20 to
-i

25 sec where observations of nearly zero QL occur in the

data set for western North America and commonly in other

areas as well (e.g. Tsai and Aki, 1969). In Lee and Solomon

(1975), the data in this period range were concluded to be

incompatible by set theoretical inversion. Such an apparent

incompatibility does not arise in the complete formulation

of complex earth model and observations.

It is of interest to compare the simultaneous

inversion of this paper with the approach recently used by

Anderson et al. (1977), Anderson and Hart (1976) and Hart

et al. (1976, 1977). The technique adopted by these workers

has been to correct the real part of their data for the

effect of anelasticity, using equation (4.8) and the

Anderson and Archambeau (1964) theory, and then to invert

their corrected (real) data to obtain an elastic (real)

earth model. The method of Anderson, Hart and others is

not mathematically 6quivalent to the complete anelastic

earth problem, equation (5.8); a comparison of the two

approaches is given in Appendix V. Because of the complicated

dependence of acl/a 02 on depth (Figure 6.7a), and because of
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the significant coupling of 3:l/382 with anelastic dispersion,

the two approaches 4o not yield identical results, particularly

when the observational frequencies are far from the reference

frequency or when the observational frequency band is wide

(see Appendix V). For some earth structures, the two sets of

results can differ substantially.

A comparison of the two inversion approaches for the

Love wave data set for western North America illustrates

some of the differences in their predictions. The bounds

on 8 and Q- in the earth for Sl are compared in Table 19

with those for model QCl (for Q-corrected), obtained by

first correcting the observed phase velocities following

Liu et al. (1976) and Anderson et al. (1976) for the 0-1

model of Figure 6.4 and then performing an inversion of the

corrected real data. The 'best' model for the two different

approaches (Sll and QCII) characterize well the differences

between the two techniques (see Figure 6.11). The

Anderson-Hart approximation yields a monotonically increasing

velocity structure while the simultaneous inversion yields a

0 model with a slight low velocity zone.

All of the proposed dispersion-attenuation relations lead

to earth models that can fit the phase velocity and Q-1 data,

but the various models have very different frequency

dependences. The intrinsic dispersion in 8 within the low

Q zone varies from about 10 percent for S1 to 1 percent for

S5 between frequencies of .01 and 1 Hz. For frequency
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independent Q, the need for a low velocity zone disappears

for frequencies near 1 Hz and above, though low velocity

zones for shear waves are required at that frequency for the

other dispersion-attenuation relations. The frequency

dependence of Q-I is also obviously different for the

various dispersion-attenuation relations, varying from

constant to a slowly decreasing function of frequency to a

complicated frequency dependence for relaxation models.

The inversion in this thesis for relaxation model S5 is of

course not general because only a few isolated relaxation

peaks and only fixed relaxation times and relative relaxation

strengths were considered. The surface wave data alone do

not contain enough independent information to regard the

spectrum of relaxation times and relaxation strengths to

be free parameters that vary with depth.

Broad band observations of body wave velocities and

amplitudes offer the greatest promise for narrowing the

range of possible dispersion-attenuation relations.

Probably, a constant Q model can be discarded at present,

at least for frequencies near 1 Hz and above, because of

the prediction of such a model that a low velocity zone

in western North America may disappear at such frequencies,

clearly untrue (Archambeau et al., 1969), and because the

lateral variation in amplitudes predicted for short period

P and S waves from Q-1 models fit to long period surface
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wave and body wave data are much larger than obscrved

(Solomon et al., 1970; Der et al., 1975). To discriminate

among the other proposed models or to test more complicated

relaxation models, phase and amplitude spectra of P and S

waves that have passed through the low Q, low velocity

zone shodld ideally be obtained over a frequency band

spanning .001 to 10 Hz.

When such tests are conducted, it will be important to

explore fully the assumption that the measured amplitude

losses for surface waves are due only to anelasticity. If

a scattering mechanism is an important contributor to the
-l

losses, then both the inferred Q a structure and the

associated dispersion in 6 may differ considerably from the

results reported here.

b. Love and Rayleigh waves in western North America

The most serious problem here may be SV/SH anisotropy

in western North America. Love and Rayleigh wave phase

velocities are incompatible for almost the entire conmon

frequency range. Also as indicated in Chapter II, Rayleigh

wave attenuation QR-  in the period range 35-40 seconds

-l
shows disagreement with Love wave attenuation QL This

is not a consequence of simultaneous inversion but appears

to be a consequence either of anisotropy or of some

interference effects in the waveforms analyzed. The
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measurements of Rayleigh wave phase velocity in Solomon

(1971) are comparatively lower than other reported

measurements in the western United States (Biswas and

Knopoff, 1974). However, if we look at the contour map of

Pn velocity in western United States (Archambeau et al., 1969)

the path between LON and TUC lies in a low Pn velocity 'valley'.

To fit the phase velocity curve for Rayleigh waves, a LVZ

seems to be necessary contrary to the result of separate

Love wave inversion in the previous section. This particular

path may be complicated by multiplying effects and/or mode

conversions.

c. Love and Rayleigh waves in east-central North America

The simultaneous inversion results for east-central

North America give a thick lithosphere and a monotonically

increasing velocity model at 1 Hz. A LVZ may not be required

at 1 Hz. However, a LQZ is probably present at depths

greater than 130 km.

A second result of simultaneous inversion is that the

S-wave velocities in other than the crust are increased

considerably and density is decreased compared to the

results of separate inversion of phase velocity. At the

same time, for Q independent of frequency, Q in the

asthenosphere seems to be greater than predicted by the

results of separate inversion.

The frequency dependent Q8 -I models are also
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satisfactory for predicting observations. To discriminate
-1

among the possible dependences of Q , more preciseB

measurements of Q- must be made.

Similarly, as described in the previous section, the

data incompatibility in some period range which occurred in
-1I

the separate inversion for Q does not arise in the

simultaneous inversion. The incompatibilities which are

indicated in Figures 2.6c and d did not occur in the

simultaneous inversion.

d. Rayleigh waves in the central Pacific

The results of simultaneous inversion for 9 and

in the cenLral Pacific are shown in figure C.2U. The LVZ and

LQZ coincide and are extensive (60 and 225 km depth). The

lithospheric thickness is less than in western North

America (tectonic) and east-central North America (shield).

Compared to the Forsyth's models (Table 9, 1975a;

Figure 9, 10, and 11, 1977), the result of simultaneous

inversion, model S21P, shows a similar shear velocity

profile to 135 m.y. old ocean even though model S21P

represents 80-90 m.y. old ocean on the average. Forsyth

suggested 80-90 km as the starting depth of partial melting.

Model S21P suggests a shallower asthenosphere at 60 km depth,

which agrees with Mitchell's (1976) model. This is
-i

probably because Q profile may give a different result

from that by velocity profile. Shear velocity at depths

greater than 220km may be much higher than any of Forsyth's
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models. Otherwise the LVZ will terminate at much shallower

depth.

Compared with Mitchell's Q model (1976), the noticeable

differences are that the LQZ may extend deeper than 220 km

and that the LQZ is more pronounced. The Q structure

deeper than 220 km is not resolved very well. At around

-1100 sec period, Mitchell's 0 R data were incompatible.
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CHAPTER VII

Conclusions

Determining the variation of anelastic properties

such as seismic attenuation within the earth's interior

both vertically and laterally can be a useful tool to

study the physical state of the earth's interior. This

is particularly true of the upper mantle, where seismic

energy absorption is highest. A precise determination of

such properties will help many seismic studies, including

those on seismic sources, path effects and seismic

discrimination. Also the anelastic properties provide

valuable hints on the tectonic history of the earth. For

example, zones of active continental-continental collision

may be characterized by unusually high attenuation such as

under Tibet (Bird, 1976). The thickness of the lithosphere,

or high-Q lid, is closely related to lithosphere age

and deeper lateral variations may reflect sub-lithospheric

convection flow patterns.

However, we have seen several negative aspects of the

seismic attenuation studies. First, the anelastic behavior

of materials under such high temperature and pressure

conditions as in the earth's mantle is poorly known,

because such conditions are very difficult to reproduce

in the laboratory. At present we must rely mostly on

seismic data. Secondly, much of the seismic data

0 -
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available now are determined by few samples with large

uncertainties. Moreover, the seismic amplitudes often

have been subject to geometrical complications, such as

scattering, mode conversion and multipathing effects.

Because of all these difficulties, many of the seismic

attenuation studies have produced either inconclusive

results or even physically implausible results.

One area where most such complications can be overcome

is the study of surface wave attenuation. Many advantages

of the surface wave attenuation method are reviewed by

Anderson et al. (1965). Surface wave amplitudes are often the

most prominent feature of the seismogram. The geometrical

spreading factor for surface waves can be easily corrected.

Surface waves have been less subject to scattering because

of their long periods, and, most importantly, surface waves

penetrate deep into the earth's upper mantle, where the LQZ

exists.

The relatively long period data of surface wave

attenuation are still not free of geometrical effects, as

are discussed in section 2.6.5. For example, when a

seismic wave with wavelength 100 km travels 2000 km

distance, an inhomogeneity larger than 10 km could cause

non-negligible scattering effects. These kind of

geometrical complications have been observed by Tryggvason

(1965), Tsai and Aki (1969) and Solomon (1971).
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The contamination of seismic surface wave attenuation

measurements by such effects causes problems in the

inversion of such data. For contaminated and uncertain data,

an L norm type of inversion has clear advantages compared

to L2 norm approaches (see details in section 2.3). L2

norm inversions (least-square type) have often produced

physically impossible negative Q-1 solutions. L1 norm

inversion, developed as the set theoretical approach,

which includes the square matrix inverse and the linear

programming technique, and applied to North America and

the Pacific in this thesis, gives a number of advantages.

The geometrical visualization of the square matrix inverse

can be useful to select the proper layering. By choosing

proper layer thicknesses, the solution domain can move into

the physically meaningful positive domain and be more

strongly focussed. A bad layering can either lead the

solution domain into the negative domain or widely spread

it out. Also we can sort out incompatible data, defined as

data which do not contribute to build the solution domain

in L norm inversions, a phenomenon noted for data from

the minima in Q at 20-25 second period in Solomon's data

(1971). The linear programming technique can define the

lower and upper bounds of the solution domain. Because of

the poor statistics of attenuation data, it is often not

meaningful to pursue a single best model.

The question of whether linearity of seismic attenuation
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mechanisms is justifiable is important. In the past,

non-linearity was considered from several aspects. First,

Knopoff (1956, 1959) argued that the observations of Q

independent of frequency are incompatible with linear

mechanisms, which show a strong frequency dependence.

Second, laboratory experiments of stress-strain hysteresis

show a cusp in the hysteresis curve (non-linearity) for

-6strain amplitudes greater than 10- . Seismic strain

amplitudes are small but marginal in this regard. Another

aspect of the argument comes from the fact that body

waves do not show dispersion, which is a main characteristic

of linearity.

However, Orowan (1967) and Liu et al. (1976) showed

that a band-limited superposition of linear mechanisms can

explain the first argument. Also a slight frequency

dependence, which has not been fully tested with still

largely uncertain and limited observations, could explain

a limited dispersion at short body wave periods. Efforts

to search for the effects of such body wave dispersion

should be continued. Because the second argument against

linearity is marginal, we prefer to retain linearity for

the cle&:• computational advantages arising from the super-

position principle.
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Linearity is controlled by the causality principle

as well as the superposition principle. The causality

principle, 'no signal before stimulus', requires accompanying

dispersion (anelastic dispersion) if there is absorption.

The causality principle has often been violated in seismic

studies. The assumptions of Q independent of frequency and

of perfect elasticity (no dispersion) under linearity are

incompatible.

The consequence of neglecting anelastic dispersion is

tremendous. The existing perfectly elastic earth models are

either misrepresented or cannot be compared fairly with each

other. Intrinsic dispersion of shear velocity is an

important consequence of anelasticity, particularly within

the low-Q zone beneath oceanic and tectonically active

regions. Beneath western North America, dispersion can be

as great as 10 percent over two decades in frequency,

depending on the frequency dependence of Q -1

One of the important consequences of anelastic dispersion

is that the 'baseline discrepancy' question is resolved

(Anderson et al., 1977). Sipkin and Jordan (1975) suggested

a 'continental bias' might be the cause of this 'base line

discrepancy'. If anelastic dispersion is considered)no

deep continent-ocean differences are necessary.

Simultaneous inversion is a proper approach to consider

the effect of anelastic dispersion which is a first order

correction to anelastic velocity models compared to a second
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order effect in perfectly elastic models. The simultaneous

inversion approach is formally different from the approximate

inversion scheme of Anderson and Hart (1976) and gives

different results. The differences can be amplified when

the observational frequency range is wide and/or the

reference frequency is far from the observational

frequencies. No matter how the observational frequency

band is spread, no matter where we choose a reference

frequency, a given dispersion-attenuation relationship

may be used to extrapolate models to any frequencies.

The difference between the simultaneous inversion

approach and the approximate approach of Anderson and

Hart (1976) is larger for Love waves than for Rayleigh.

waves, simply because the partial derivatives of off-

diagonal terms for Rayleigh waves are much smaller than

for Love waves (see Appendix V). However, most of the

advantages are still retained for Rayleigh waves by use of

simultaiteous inversion.

Other consequences of simultaneous inversion are that

the incompatibility in the attenuation data set decreases

substantially and the resolution in 0 versus depth in

the earth is improved for a given dispersion-attenuation

relation over the separate inversion of 0-1 data alone.

-- ~--
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The most interesting results of the inversions are

the lateral variations of mantle structure. A distinctive

LQZ seems to exist everywhere we have data, including

western North America (tectonic), east-central North

America (stable platform) and the central Pacific (oceanic).

However, the thicknesses of the high-Q lid varies from

place to place: 60+20 km in the central Pacific, 80+20 km

in western North America and 130+30 km in east-central

North America. These results are related to the differing

tectonic history of each region. In east-central North

America, a thick lithosphere has grown over time, and the

asthenosphere shows relatively mild attenuation as well as

the possibility of no LVZ at a frequency of 1 Hz. In

western North America, a thinner lithosphere with

substantially higher attenuation in the asthenosphere is

characteristic. Many authors have suspected there is

substantial partial melting in the asthenosphere of this

region. The excess heat necessary to produce melting may

have been related to the recent subduction of oceanic

lithosphere along western North America.

The LVZ and LQZ coincide in western North America. The

inversion of Love wave data alone shows that the assumption

of Q independent of frequency over the entire seismic band

leads to the removal of the requirement for a LVZ for shear

waves at frequencies above 1 Hz. The LVZ persists at these
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frequencies, however, in the results of the combined

inversion of Love and Rayleigh wave data. However, a

possible anisotropy problem in western North America may

have contributed to an inability to discriminate among

various dispersion-attenuation relations. In the Pacific,

the LVZ and LQZ coincide as in western North America. The

Pacific shows a thinner lithosphere ( 60 km thick) but

lower shear attenuation Qi in the asthenosphere than in

the tectonically active western North America.

Widening the period range of attenuation data, conducting

more accurate measurements of Q, and confirming or disproving

dispersion of body waves will be a good direction to pursue

answers to-some of the questions raised by this study.
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Appendix I. Kramers-Kr8nig Relationo (Ref: Landau and
Lifschitz, 1960; Futterman, 1962; Papoulis,
1962)

A direct consequence of the causality principle,

Kramers-Kr8nig relations relate the real and imaginary

parts of the refractive index of the medium by integral

transforms in the frequency domain. The causality

principle states that no signal can travel faster than

the signal velocity:

u(r,t) = 0 for t < T (A.I.I)

where u(r,t) is a displacement pulse and vo is the

signal velocity at frequencies above a cut-off frequency

Wc , above which it is assumed that no absorption occurs

and thus the phase velocity is non-dispersive.

Representing the pulse by a Fourier transform,

u(r,t) = = U(r,w 1 ) e- WI t dw1  (A.I.2)

Here the displacement u(r,t) associated with seismic

waves should be zero if t< T , but the Fourier component

u(r,&) may not be zero at any time. Therefore, causality

requires that these Fourier components must be combined

in such a way that u(r,t) = 0 when t < . A destructive

interference for t<- causes a frequency dependent phase

velocity in the medium (dispersion). Now we are going to
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find a way to integrate equation (A.I.2) to meet causality.

Equation (A.I.2) can be written as a superposition of

plane waves in a complex representation of the form

u'(r,t) = I U(wI) eik(w)r - i wlt dw I  (A.I.3)

where K(() is the complex wave number. The index of

refraction n(W1 ) of the medium is given as

n(w I) =K(w1)/Ko(WI1

KO(w,) -

where KO defines the nondispersive behavior of K at the

same frequency. Since we have assumed that no absorption

occurs above the cut-off frequency tdc , Im n(wc) = 0

and Re n(w ) = 1.

The inversion of the integral (A.I.3) gives

i( 1 ) eik (wl)r 1 eiWt

U( e f'u(r,t) e dt

Invoking the causality condition (A.I.l)

U(W3 ) eik(wi)r = f ou(r,t) eiW t dt (A.I.4)

2n_,
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Define P - t -

U(w1 ) eik()r fu(r,p+r) eiw e ii I T dp
0

Using K(w I) = n(wi)wi/v .  and T = r/v.,

U(wl) e = 2 fO u(r,P+T) e i I0 dp (A.I.5)
2v0

where

h ( = W I /v.[n(w 1 )-]

Since 0 > o , we define a new function OM identical in

form with the left hand side of (A.I.5), where "W1 is

replaced by a complex w, w =w + iW2 .

() = U(w) ei (w)r 1 f' u(r,p+T) eiwP dp (A.I.6)

The analyicity of ei (W)r in the upper half plane of

frequency for Y > o follows easily from (A.I.6), due to the

W2 P
factor e Although we do not go into ti.- rigorous

proof here, it is not difficult to show that the exponent

CMo) itself is analytic in the upper half plane u.h.p. from

the analyticity of ei (w)r. Because of the analyticity

of (w), we can apply Canchy's residue theorem. Now we

can write
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;(w) An n(w)
V.

where An( ) = n(w) - 1

Now An(w) is analytic in the u.h.p. of frequency, so that

Canchy's residue theorem can be written as

= ---L P -f n( dw (A.I.7)

where P denotes the Canchy principal value. Fran

eq. (A.I.7.), the expressions for the real and imaginary

parts are

Re An(w = p f ImMn(w) dw (A.I.8)

- 1 fRein(w) d. (A.I.9)Im~n(wl) = - p f d wl

Since Im n(w ) = 0, Equation (A.I.8) becomes
C

e[n(w)- . ImAn(w) d (A.I.10)Reln{ )- W =C W.p]_ - Wl

From equation (A.I.3), since the displacement is a real

function of position and time, the crossing symmetry

relationship holds, K(w) = K (-w)
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and subsequently, n(w) = n (-w)

Re n(w) = Re n(-w)
(A.I1.11)

Im n(w) = -Im n(-w)

Using (A.I.11), equation (A.I.10), can be written as

R[n (w p Im n M)
21 I n dw (A.I.12)

0

with the result p fo d = 0, equation (A.I.9)_CO-m 1
becomes,

Im n(w) = 1 .Re n(w) d (A..13)

Similarly using crossing symmetry relations, equation

(A.I.13) can be written as

Im n(= )  2w, P f- Re n(w) dw (A.I.14)

0 m-- 1

Equations (A.I.10) and (A.I.13) or (A.I.12) and (A.I.14)

are known as Kramers-Kr~nig relations.
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APPENDIX II. Dispersion Relations: Frequency Domain Approach

The complex wave number K(w) can be expressed in terms

of the phase coefficient k and the attenuation coeffic ent'X:

KM = k(w) + iX(&i) ( Il

The index of refraction of the mediun~ is

-() K(wa) _ k(w) + iX(w) (A.II.2)
KC W/V c

where K C, % are the non-dispersive limits of K and v, respec-

tively, and v is the phase velocity.

Usually for the frequency-domain approach, the attenuation

coefficient X("w) is assumed to have a certain frequency

dependence.

X(W) - C w or C W 1V where 0 <v< 1.

Therefore Imn,-) = MV

C, or C2wV (A.II.3)

From the Krazners-Kr8nig relations (Appendix I)

Re~n~wl)]2 7 Ir n n(w)-d
Ren~1) -I j P0 O-
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This integral can be evaluated for (A.II.3),

_CIin '

Re[n( l)J - 1 ia } 0
(A.'rI.4)

or =Cp)w Cot 1- V 0

(Whittaker and Watson, 1962, p. 117).

The phase velocity and the reciprocal quality factor can be

written as

W) V.°

v(w) -(u) Re n(w)

(A.II.S)

-1 2X(w) v.
Q-(w) =2 Im n(w)

Therefore, the dispersion relations are given substituting

(A.II.3) and (A.II.4) into (A.II.5). And we obtain,

C 11
(1 - lr )-1  V =  0

v (W)/v =
1 cot0

-V 1V .0I+ Cil o

In this case n(-) 1 because the reference non-dispersive

behavior is at infinite frequency.

V2 Ci ,  
v 0

(W)

P0

, .. .. I
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where C 2o 2 qa v(v-i)! sin 2.-
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APPEUDIX III. Dispersion Relations: Time Domain Approach

(Lomnitz, 1957; Liu et al., 1976)

For the time-domain approach, the creep function *(t)

is furnished to derive dispersion relations. Generally,

the one-dimensional stress-strain relation is given by

Boltzmann' s after-effect equation,

t •

c(t) - j- {a(t) + I o(T) *(t-r)dr} (A.III.1)
U -

where Mu is an unrelaxed elastic modulus and o(t) is the given

loading stress. Since * 0 for t < 0, (A.III.]) can be

written as a convolution,

C(t) = f--I{o(t) + o(t)*O(t)) (A.III.2)
U

For a plane wave, a = aoe L(kx-wt) and from (A.III.1)

C(t) = {I + ( )eiTdT} (A. III.3)

U

Therefore, a complex modulus M(w) is given as

SIT/[l + LWT (A. III.4)

M4(W) = 1 *(-r)e dri0

ao
From the equation of motion, pu =

PW2 = K(w) 2M(w) (A.III.5)

1i -~K- -._..I. .
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using (A.1Il), (A.III.4) and (A.III.6),

W = v0 /Re (1 + f *(t)e iWtdtl 2

0

iWt
-ll 2 M( )_ 21m{ 0 f'*(t)e dt)

ReM M(w) + Re{ m,(t)eiwtdt}

where v p.

For the case of the Jeffrey-Lomnitz law,

*(t) = v [(1+at)v -11

#(t) = qa(l+at)V -

Let
°* itte- tdt iwtt

I - *(t)e dt= qaf (l+at)v-le dt
o 0

Putting (I+at) = p,

0 a

00

=q pV1 e for small (Jeffreys, 1975).

0a

Putting k - -i(S),
a

I - qk-v v v-le-kPdp]
0

- qk-vr(v), where NOv) is the Gamma function.

L - --- Odo. . . ...m
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I=qavw~~-v r v)

Therefore

v~w)/v= 1/(l.+ qa V(wV (v-1)!cos!j) 1/Cl + Cw vcota!)

2qavw- (v-lflsinT CV o qsvai
Q- (W) = 2 __i___C___ forq__xvall

i+ qa w V -1Icos

where

C qav (v-1)!sin nv
2
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APPENDIX IV. Partial Derivatives at a Reference Frequency

Using equation (5.18), partial derivatives at a reference

frequency can be given as follows. For convenience, the

0 0 0 0
symbols 8, 802 a, and a2 are used for 8 1, 82, al , 12'

respectively, at the reference frequency.

- ( ) g + )ij hi AV2)

( - (A.IV.3)

C2 3c2  +(c 2 )
C-).g + 2'

I  ac 2 (A.IV.4)

=(a g. + (-).. h.

- ij = j  (A.IV.5)

'~a ac- )i ac 1 U -li i + ( )i j hi (A.IV.6)
C-).. (a-

c 2c 2  ac 1(C l

,! ( )0 ij 1 ( i i j  33 ( -2 i j  ( .V 7

12) 1 2 ac2

-1 92 'i + (AVj.hi

2 )(A. IV. 8)

1 ). g. + (-.l)i hi
Ta3(1 1 aa ij 1
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-.he last steps of equation (A.IV.3), (A.IV.4), (A.IV.7),

and (I,.IV.8) are the consequence of Cauchy-Riemann relations

(5.11). From dispersion relations (4.8) and (4.10)

In (w/w) for constant Q

cot l/21cal-(w/wo)V) for power law Q

1 for constant Q

(W/Wo)-V for power law Q

For the case of constant Q, with the inversion at a reference

frequency, the matrix equation (5.6) for Love waves becomes

Ac:;
I 0 I

AC a ;c 2  ac2
Ac 2  0 a 0 2

) i0 
j

(A.IV.9)

a c 1  a I g +  1 c2 h A s

ac ac I -3c I  c ac 1

3j 2 ,1 h 2 2
ij WOj



358.

1c +c1

where 8 - __.

For Rayleigh waves, the matrix equation (5.7) becomes

3C ac ac ac ac

A A 1

Cc 2 3C 2  3 2  ac2  ac2  A 2

- 0 T$2 co O02 apjAp W0t

A$ 1

ac + h h Bc1
1g+hc 1 g+Sp A&ct 2

6 h-96 ) -1/ -6 h-g6 acJ 2,A

3cI 3c 1 .

where 6 = I-/ a-
2 1
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APPENDIX V. Comparison Between Simultaneous Inversion and

the Correction Technique of Anderson and Hart

The procedure of Anderson and Hart differs in several

fundamental respects from a complete simultaneous inversion.

1) Their procedure adopts as given a Q model determined

by a separate inversion Lased on an elastic velocity model.

The adopted Q model is used to correct phase velocity (eigen-

period)data for intrinsic dispersion.

The simultaneous inversion takes both 0 and velocity as

unknowns.

2) Their procedure neglects the contrihution from 'off-

diagonal' terms in the partial derivative matrix (5.6). These

terms are usually coupled with gi, a measure of dispersion

(Appendix IV). Since gi can be large when observed frequencies

are far from the reference frequency, the contribution from

'off-diagonal' related terms may not be small.

We illustrate these differences with an example: the

problem of finding two-layer models of shear velocity and

attenuation from two observational pairs (phase velocity and

attenuation), under the assumption that Q is independent of

frequency. For the Anderson-Hart Q-correction procedure

(A B (:::lI 2)o ((AAcVc 2 )

C D (%V,62)q (Ac1 ,Ac2) n

Vi
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where (AOIAO2 )j are the model pairs for the j-th layer and

1(A1C )are the i-th observational pairs. A, B, C, D are
a(cl)m

an abbreviated notation for partial derivatives; e.g. A

For the simultaneous inverse problem, from Appendix IV.

A (B:;:6) g m +6 
/AC

I +gm6 -6 l-gin6 A2 Ac2

p m

( n+6g I gn-6\ (
l_ gn6 6 l+g n A2 q Ac A 2 )

Sac I  ac I

where 6 - :1 :I. Here 6 is used as a single value for

simplicity, although it may vary in different layers and

different frequencies. Thus

(A 1IS - A1) p,QC + g F1 ((Ac 2)i) + g Ag6F 2 ((Ac 2 )i )

+ g6F 3 ((Acl) i ) + Ag6F 4 ((Acl) i ) + 0(6)

(A.V.2)

(L02)p, S  ( 8 2)p,QC + 6AgGl((Ac 2 )i ) + IG 2 ((Acl)i) + 0(62)

where

Ag M gn - gm

F1 ( l c 2 ) ) - ((Ac 2 )mDg 1 )/(AD-BC)

F2((c2) i ) - 2 ((Ac 2 )nA - (&C2 )mC} BD/(AD-BC)

F3 U~cl)1 ) " l((AC)mD - (ACl)nB)/(AD-BC)

3 1 1



361.

F4((Ac)) ((Ac ) mD - (Ac In B)/(AD-BC)

G1 ((AC 2 ) i ) 2 (Ac1 )n A - (Ac2)mC) BD/(AD-BC)

G2 ((ACl)i) ((Acl)nB - (ACl)mD)

and where S stands for simultaneous inversion and QC stands

for the Anderson-Hart Q correction technique. Similarly

(VA1.A82) q can be computed. The correction terms on the

right-hand side of equation (A.V.2) are O(g), O(gAg6), O(g6),

O(Ag6), etc. The 6s are typically 0.05 (see Figure 6.7a) and

and g's are 2-3 in our problem. g can be larger when the

observational frequencies are even further from the reference

frequency, taken as 1 Hz in this work. Ag is 1.1 for the

Love wave data of western North America if Q is constant; it

can be larger when the observational frequency band is wider.

(,

I 1

.. ... .. " I
i i F I I i I i I - I i
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